William A. Hawley
UNICEF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William A. Hawley.
Malaria Journal | 2010
M. Nabie Bayoh; Derrick K Mathias; Maurice R. Odiere; Francis M. Mutuku; Luna Kamau; John E. Gimnig; John M. Vulule; William A. Hawley; Mary J. Hamel; Edward D. Walker
BackgroundHigh coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females.MethodsData of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005.ResultsAnopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.).ConclusionsA marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.
Journal of Medical Entomology | 2001
John E. Gimnig; Maurice Ombok; Luna Kamau; William A. Hawley
Abstract A longitudinal survey of mosquito larval habitats was carried out in Asembo Bay, western Kenya, during the rainy season of 1998. All pools of standing water along a 700-m transect were sampled twice per week. For each habitat, eight environmental variables were recorded and a sample of anopheline larvae was collected for identification. In total, 1,751 Anopheles gambiae s.l. and 2,784 Anopheles funestus Giles were identified. Identification of An. gambiae s.l. by polymerase chain reaction (PCR) indicated that 240 (14.7%) were An. gambiae Giles and 858 (52.4%) were An. arabiensis Patton; PCR failed to identify 539 (32.9%) specimens. Repeated measures logistic regression analysis indicated that An. gambiae and An. arabiensis larvae were associated with small, temporary habitats with algae and little or no aquatic vegetation. Anopheles funestus larvae were associated with larger, semipermanent bodies of water containing aquatic vegetation and algae. Direct comparison of habitat characteristics associated with either An. gambiae or An. arabiensis revealed that algae were associated more commonly with habitats containing An. gambiae; no other differences were detected. Chi-square analysis indicated that these species were collected from the same habitat more frequently than would be expected by chance alone. Together, these results indicate that An. gambiae and An. arabiensis have similar requirements for the larval environment and that, at least in western Kenya, they do not segregate into separate habitats.
Heredity | 1996
Tovi Lehmann; William A. Hawley; Luna Kamau; Didier Fontenille; Frédéric Simard; Frank H. Collins
Genetic variation of Anopheles gambiae was analysed to assess interpopulation divergence over a 6000 km distance using short tandem repeat (microsatellite) loci and allozyme loci. Differentiation of populations from Kenya and Senegal measured by allele length variation at five microsatellite loci was compared with estimates calculated from published data on six allozyme loci (Miles, 1978). The average Wrights FST of microsatellite loci (0.016) was lower than that of allozymes (0.036). Slatkins RST values for microsatellite loci were generally higher than their FST values, but the average RST value was virtually identical (0.036) to the average allozyme FST. These low estimates of differentiation correspond to an effective migration index (Nm) larger than 3, suggesting that gene flow across the continent is only weakly restricted. Polymorphism of microsatellite loci was significantly higher than that of allozymes, probably because the former experience considerably higher mutation rates. That microsatellite loci did not measure greater interpopulation divergence than allozyme loci suggested constraints on microsatellite evolution. Alternatively, extensive mosquito dispersal, aided by human transportation during the last century, better explains the low differentiation and the similarity of estimates derived from both types of genetic markers.
Lancet Infectious Diseases | 2003
C. F. Curtis; Caroline Maxwell; Martha M. Lemnge; Wen L. Kilama; Richard W. Steketee; William A. Hawley; Yves Bergevin; Carlos C Campbell; Jeffrey D. Sachs; Awash Teklehaimanot; Sam A. Ochola; Helen L. Guyatt; Robert W. Snow
Insecticide-treated nets (ITNs) have been shown to reduce the burden of malaria in African villages by providing personal protection and, if coverage of a community is comprehensive, by reducing the infective mosquito population. We do not accept the view that scaling-up this method should be by making villagers pay for nets and insecticide, with subsidies limited so as not to discourage the private sector. We consider that ITNs should be viewed as a public good, like vaccines, and should be provided via the public sector with generous assistance from donors. Our experience is that teams distributing free ITNs, replacing them after about 4 years when they are torn and retreating them annually, have high productivity and provide more comprehensive and equitable coverage than has been reported for marketing systems. Very few of the free nets are misused or sold. The estimated cost would be an annual expenditure of about US
Tropical Medicine & International Health | 2005
Mark Grabowsky; Nick Farrell; William A. Hawley; John Chimumbwa; Stefan Hoyer; Adam Wolkon; Joel Selanikio
295 million to provide for all of rural tropical Africa where most of the worlds malaria exists. This expenditure is affordable by the world community as a whole, but not by its poorest members. Recently, funding of this order of magnitude has been committed by donor agencies for malaria control.
Journal of Medical Entomology | 2001
Evan Mathenge; John E. Gimnig; Margarette S. Kolczak; Maurice Ombok; Lw Irungu; William A. Hawley
Population coverage of insecticide‐treated nets (ITNs) in Africa falls well below the Abuja target of 60% while coverage levels achieved during vaccination campaigns in the same populations typically exceed 90%. Household (HH) cost of ITNs is an important barrier to their uptake. We investigated the coverage, equity and cost of linking distribution of free ITNs to a measles vaccination campaign. During a national measles vaccination campaign in Zambia, children in four rural districts were given a free ITN when they received their measles vaccination. In one urban district, children were given a voucher, which could be redeemed for a net at a commercial distribution site. About 1700 HHs were asked whether they received vaccination and an ITN during a measles campaign, as well as questions on assets (e.g. type roofing material or bicycle ownership) to assess HH wealth. Net ownership was calculated for children in each wealth quintile. In the rural areas, ITN coverage among children rose from 16.7% to 81.1% and the equity ratio from 0.32 to 0.88 and in the urban area from 50.7% to 76.2% (equity ratio: 0.66–1.19). The operational cost per ITN delivered was
Malaria Journal | 2011
Derrick K Mathias; Eric Ochomo; Francis Atieli; Maurice Ombok; M. Nabie Bayoh; George Olang; Damaris Muhia; Luna Kamau; John M. Vulule; Mary J. Hamel; William A. Hawley; Edward D. Walker; John E. Gimnig
0.35 in the rural area with direct distribution and
Journal of Medical Entomology | 2006
Kimberly Lindblade; John E. Gimnig; Luna Kamau; William A. Hawley; Frank Odhiambo; G. Olang; F.O. ter Kuile; John M. Vulule; Laurence Slutsker
1.89 in the urban areas with voucher distribution. Mass distribution of ITNs through vaccination campaigns achieves rapid, high and equitable coverage at low cost.
Molecular Ecology | 1997
Tovi Lehmann; N. J. Besansky; William A. Hawley; T. G. Fahey; Luna Kamau; Frank H. Collins
Abstract The impact of permethrin-treated bednets on the feeding and house entering/exiting behavior of malaria vectors was assessed in two studies in western Kenya. In one study, matched pairs of houses were allocated randomly to receive bednets or no bednets. Exiting mosquitoes were collected in Colombian curtains hung around half of each house; indoor resting mosquitoes were collected by pyrethrum spray catches. The number of Anopheles gambiae Giles and An. arabiensis Patton estimated to have entered the houses was unaffected by the presence of bednets; Anopheles funestus Giles was less likely to enter a house if bednets were present. Anopheles gambiae and An. funestus were less likely to obtain a blood meal and significantly more likely to exit houses when bednets were present. No difference was detected in An. arabiensis rates of blood feeding and exiting. In a second experiment, hourly night biting collections were done on 13 nights during the rainy season to assess whether village-wide use of permethrin-treated bednets caused a shift in the time of biting of malaria vectors. A statistically significant shift was detected in the biting times of An. gambiae s.l., although the observed differences were small. No change was observed in the hourly distribution of An. funestus biting. Our study demonstrated that, at least in the short-term, bednets reduced human-vector contact and blood feeding success but did not lead to changes in the biting times of the malaria vectors in western Kenya.
Tropical Medicine & International Health | 2005
Kim A. Lindblade; Ellen M. Dotson; William A. Hawley; Nabie Bayoh; John Williamson; Dwight L. Mount; George Olang; John M. Vulule; Laurence Slutsker; John E. Gimnig
BackgroundMalaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l.MethodsTo investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays.ResultsAnopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested.ConclusionsThe kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.