William A. Langley
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William A. Langley.
Nature | 2008
Jens Wrammert; Kenneth Smith; J.I. Miller; William A. Langley; Kenneth E. Kokko; Christian P. Larsen; Nai-Ying Zheng; Israel Mays; Lori Garman; Christina Helms; Judith A. James; Gillian M. Air; J. Donald Capra; Rafi Ahmed; Patrick C. Wilson
Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14–21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.
Applied and Environmental Microbiology | 2005
Alfredo G. Torres; Cecelia Jeter; William A. Langley; Ann G. Matthysse
ABSTRACT Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.
Journal of Virology | 2013
Mohammed Ata Ur Rasheed; Donald R. Latner; Rachael D. Aubert; Tania Gourley; Rosanne Spolski; Carl W. Davis; William A. Langley; Sang Jun Ha; Lilin Ye; Surojit Sarkar; Vandana Kalia; Bogumila T. Konieczny; Warren J. Leonard; Rafi Ahmed
ABSTRACT Long-lived plasma cells that reside in the bone marrow constitutively produce antibody in the absence of antigen and are the cellular basis of durable humoral immunity. The generation of these long-lived plasma cells depends upon a series of highly orchestrated interactions between antigen-specific CD4 T cells and B cells and the formation of germinal centers (GCs). In this study, we have examined the role of the cytokine interleukin-21 (IL-21) in regulating humoral immunity during acute viral infections. Using IL-21 receptor-deficient (IL-21R−/−) mice, we found that virus-specific CD4 T cells were generated after infection with lymphocytic choriomeningitis virus (LCMV) and that these CD4 T cells differentiated into T follicular helper (TFH)-like cells in the absence of IL-21 signaling. There was also no defect in the formation of GCs, although after day 15 these GCs disappeared faster in IL-21R−/− mice than in wild-type mice. Isotype switching and the initial LCMV-specific IgG response were normal in IL-21R−/− mice. However, these mice exhibited a profound defect in generating long-lived plasma cells and in sustaining antibody levels over time. Similar results were seen after infection of IL-21R−/− mice with vesicular stomatitis virus and influenza virus. Using chimeric mice containing wild-type or IL-21R−/− CD4 T cells and B cells, we showed that both B and CD4 T cells need IL-21 signaling for generating long-term humoral immunity. Taken together, our results highlight the importance of IL-21 in humoral immunity to viruses.
Journal of Virology | 2010
Scott N. Mueller; William A. Langley; Elena Carnero; Adolfo García-Sastre; Rafi Ahmed
ABSTRACT The generation of vaccines that induce long-lived protective immunity against influenza virus infections remains a challenging goal. Ideally, vaccines should elicit effective humoral and cellular immunity to protect an individual from infection or disease. Cross-reactive T- and B-cell responses that are elicited by live virus infections may provide such broad protection. Optimal induction of T-cell responses involves the action of type I interferons (IFN-I). Influenza virus expressed nonstructural protein 1 (NS1) functions as an inhibitor of IFN-I and promotes viral growth. We wanted to examine the priming of CD8+ T-cell responses to influenza virus in the absence of this inhibition of IFN-I production. We generated recombinant mouse-adapted influenza A/PR/8/34 viruses with NS1 truncations and/or deletions that also express the gp33-41 epitope from lymphocytic choriomeningitis virus. Intranasal infection of mice with the attenuated viruses primed long-lived T- and B-cell responses despite significantly reduced viral replication in the lungs compared to wild-type virus. Antigen-specific CD8+ T cells expanded upon rechallenge and generated increased protective memory T-cell populations after boosting. These results show that live attenuated influenza viruses expressing truncated NS1 proteins can prime protective immunity and may have implications for the design of novel modified live influenza virus vaccines.
Journal of Immunology | 2010
Scott N. Mueller; William A. Langley; Gui-Mei Li; Adolfo García-Sastre; Richard J. Webby; Rafi Ahmed
Viral infections often induce robust T cell responses that are long-lived and protective. However, it is unclear to what degree systemic versus mucosal infection influences the generation of effector and memory T cells. In this study, we characterized memory CD8+ T cells generated after respiratory influenza virus infection and compared the phenotypic and functional qualities of these cells with memory T cells generated after systemic infection with lymphocytic choriomeningitis virus (LCMV). Using a recombinant influenza virus expressing the LCMV gp33–41 epitope and TCR transgenic CD8+ T cells with a fixed TCR, we compared responses to the same Ag delivered by mucosal or systemic viral infection. Memory cells generated postinfection with either virus showed only a few phenotypic differences. Yet, influenza memory T cells produced lower amounts of effector cytokines upon restimulation and displayed reduced proliferation compared with LCMV-induced memory cells. Strikingly, we observed reduced expansion of spleen- and, in particular, lung-derived influenza memory cells after recall in vivo, which correlated with reduced early protection from secondary infection. These findings suggest that qualitatively different memory CD8+ T cells are generated after respiratory or systemic virus infections.
Journal of Virology | 2008
Jeffrey Meisner; Kristy J. Szretter; Konrad C. Bradley; William A. Langley; Zhu-Nan Li; Byeong-Jae Lee; Sudha Thoennes; Javier Martín; John J. Skehel; Rupert J. Russell; Jacqueline M. Katz; David A. Steinhauer
ABSTRACT The replicative properties of influenza virus hemagglutinin (HA) mutants with altered receptor binding characteristics were analyzed following intranasal inoculation of mice. Among the mutants examined was a virus containing a Y98F substitution at a conserved position in the receptor binding site that leads to a 20-fold reduction in binding. This mutant can replicate as well as wild-type (WT) virus in MDCK cells and in embryonated chicken eggs but is highly attenuated in mice, exhibiting titers in lungs more than 1,000-fold lower than those of the WT. The capacity of the Y98F mutant to induce antibody responses and the structural locations of HA reversion mutations are examined.
Journal of Virology | 2008
Zhu-Nan Li; Byeong-Jae Lee; William A. Langley; Konrad C. Bradley; Rupert J. Russell; David A. Steinhauer
ABSTRACT During membrane fusion, the influenza A virus hemagglutinin (HA) adopts an extended helical structure that contains the viral transmembrane and fusion peptide domains at the same end of the molecule. The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show that the region flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect to requirements for the folding of native HAs and length restrictions for membrane fusion activity.
Journal of Virology | 2010
William A. Langley; Konrad C. Bradley; Zhu-Nan Li; Mary Ellen Smith; Matthias J. Schnell; David A. Steinhauer
ABSTRACT Viral vectors based on influenza virus, rabies virus (RV), and vaccinia virus (VV) were used to express large polypeptide segments derived from the Bacillus anthracis protective antigen (PA). For the infectious influenza virus vector and recombinant VV constructs, the receptor binding domain (RBD or domain 4) or the lethal and edema factor binding domain (LEF or domain 1′) were engineered into functional chimeric hemagglutinin (HA) glycoproteins. In the case of the RV vector, the viral glycoprotein (G) was used as a carrier for RBD in an inactivated form of the vector. These constructs were examined by using multiple homologous and heterologous prime/boost immunization regimens in order to optimize the induction of α-PA antibody responses. Several immunization combinations were shown to induce high titers of antibody recognizing the anthrax RBD and LEF domains, as well as the full-length PA protein in mice. The heterologous prime/boost immunization regimens that involved an initial intranasal administration of a live influenza virus vector, followed by an intramuscular boost with either the killed RV vector or the VV vector, were particularly effective, inducing antigen-specific antibodies at levels severalfold higher than homologous or alternative heterologous protocols. Furthermore, sera from several groups of the immunized mice demonstrated neutralization activity in an in vitro anthrax toxin neutralization assay. In some cases, such toxin-neutralizing activity was notably high, indicating that the mechanisms by which immunity is primed by live influenza virus vectors may have beneficial properties.
Virology | 2009
William A. Langley; Sudha Thoennes; Konrad C. Bradley; Summer E. Galloway; Ganesh R. Talekar; Sandra F. Cummings; Varečková E; Ru Pert J. Russell; David A. Steinhauer
A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DeltaF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.
Vaccine | 2010
William A. Langley; Konrad C. Bradley; Zhu-Nan Li; Ganesh R. Talekar; Summer E. Galloway; David A. Steinhauer
The use of viral vectors as vaccine candidates has shown promise against a number of pathogens. However, preexisting immunity to these vectors is a concern that must be addressed when deciding which viruses are suitable for use. A number of properties, including the existence of antigenically distinct subtypes, make influenza viruses attractive candidates for use as viral vectors. Here, we evaluate the ability of influenza viral vectors containing inserts of foreign pathogens to elicit antibody and CD8(+) T cell responses against these foreign antigens in the presence of preexisting immunity to influenza virus in mice. Specifically, responses to an H3N1-based vector expressing a 90 amino acid polypeptide derived from the protective antigen (PA) of Bacillus anthracis or an H1N1-based vector containing a CD8(+) T cell epitope from the glycoprotein (GP) of lymphocytic choriomeningitis virus were evaluated following infections with either homosubtypic or heterosubtypic influenza viruses. We found that mice previously infected with influenza viruses, even those expressing HA and NA proteins of completely different subtypes, were severely compromised in their ability to mount an immune response against the inserted epitopes. This inhibition was demonstrated to be mediated by CD8(+) T cells, which recognize multiple strains of influenza viruses. These CD8(+) T cells were further shown to protect mice from a lethal challenge by a heterologous influenza subtype. The implication of these data for the use of influenza virus vectors and influenza vaccination in general are discussed.