William A. Mchale
Creighton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William A. Mchale.
Journal of Biomedical Materials Research Part A | 2012
Michael T. Davidson; Theresa A. Greving; William A. Mchale; Mark A. Latta; Stephen M. Gross
The objective of this study was to investigate the effect of chemical structure, ion concentration, and ion type on the release rate of biologically available ions useful for remineralization from microcapsules with ion permeable membranes. A heterogeneous polymerization technique was utilized to prepare microcapsules containing either an aqueous solution of K₂HPO₄, Ca(NO₃)₂, or NaF. Six different polyurethane-based microcapsule shells were prepared and characterized based on ethylene glycol, butanediol, hexanediol, octanediol, triethylene glycol, and bisphenol A structural units. Ion release profiles were measured as a function of initial ion concentration within the microcapsule, ion type, and microcapsule chemical structure. The rate of ion release increased with initial concentration of ion stored in the microcapsule over a range of 0.5-3.0M. The monomer used in the synthesis of the membrane had a significant effect on ion release rates at 3.0 M salt concentration. At 1.0 M, the ethylene glycol released ions significantly faster than the hexanediol-, octanediol-, and butanediol-based microcapsules. Ion release was fastest for fluoride and slowest for phosphate for the salts used in this study. It was concluded that the microcapsules are capable of releasing calcium, phosphate, and fluoride ions in their biologically available form.
Dental Materials | 2013
Michelle M. Falbo; Phillip Elassal; Theresa A. Greving; William A. Mchale; Mark A. Latta; Stephen M. Gross
OBJECTIVES The occurrence of recurrent caries at the interface of dental materials and the enamel surface is an important performance issue. The objective of this study was to investigate the most effective way to control the release rate of bioavailable phosphate ions contained in aqueous solutions within ion permeable microcapsules formulated into rosin based varnishes and resin based sealants, in order to promote remineralization. METHODS Microcapsules that contained aqueous solutions of K2HPO4 with concentrations from 0.8 to 7.4M were prepared. 3-50w/w% of microcapsules were loaded into both rosin and resin based dental formulations. RESULTS The effect of initial salt solution concentration inside the microcapsules and weight percent loading of the microcapsules on release rate were contrasted. The effect of microcapsule loading was found to be highly dependent on the continuous phase. In rosin, 3-15w/w% loading resulted in rapid release of ions. Higher weight percent loadings were initially slower but resulted in sustained release of ions. In resin, 3-15w/w% formulations slowly released ions for at least 300 days, while higher loading formulations released an initial burst of ions. Initial salt solution concentration contained inside the microcapsule affected ion release rate. Initial rate of ion release was greatest at a concentration that was less than the maximum concentration studied in both continuous phases. SIGNIFICANCE Phosphate ion release can be controlled from resin or rosin based dental material by adjusting initial salt solution concentration in microcapsules or percent loading of microcapsules. The potential for burst release from a varnish or slow, sustained release from a sealant has been demonstrated.
Journal of Dentistry | 2016
Brant D. Burbank; Michael Slater; Alyssa Kava; James Doyle; William A. Mchale; Mark A. Latta; Stephen M. Gross
OBJECTIVES Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. METHODS Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. RESULTS A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. CONCLUSIONS Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization.
Archive | 2010
Mark A. Latta; Stephen M. Gross; William A. Mchale
Archive | 2013
Latta Ma; Stephen M. Gross; William A. Mchale
American Journal of Dentistry | 2017
Brant D. Burbank; Ryan L. Cooper; Alyssa Kava; Jennifer M. Hartjes; William A. Mchale; Mark A. Latta; Stephen M. Gross
Archive | 2016
Stephen M. Gross; William A. Mchale; Mark A. Latta
Dental Materials | 2016
Stephen M. Gross; William A. Mchale; Mark A. Latta; B. Zalsman
Archive | 2013
Mark A. Latta; Stephen M. Gross; William A. Mchale
Archive | 2013
Mark A. Latta; Stephen M. Gross; William A. Mchale