William A. Staines
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William A. Staines.
Neuron | 1994
Cindi M. Morshead; Brent A. Reynolds; Constance Craig; Michael W. McBurney; William A. Staines; Dante J. Morassutti; Samuel Weiss; Derek van der Kooy
Dissection of the subependyma from the lateral ventricle of the adult mouse forebrain is necessary and sufficient for the in vitro formation of clonally derived spheres of cells that exhibit stem cell properties such as self-maintenance and the generation of a large number of progeny comprising the major cell types found in the central nervous system. Killing the constitutively proliferating cells of the subependyma in vivo has no effect on the number of stem cells isolated in vitro and induces a complete repopulation of the subependyma in vivo by relatively quiescent stem cells found within the subependyma. Depleting the relatively quiescent cell population within the subependyma in vivo results in a corresponding decrease in spheres formed in vitro and in the final number of constitutively proliferating cells in vivo, suggesting that a relatively quiescent subependymal cell is the in vivo source of neural stem cells.
Journal of Histochemistry and Cytochemistry | 1999
Stephen A. Schnell; William A. Staines; Martin W. Wessendorf
The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels.
The Journal of Comparative Neurology | 2001
J.I. Nagy; Xiangquan Li; Jeremy Rempel; Gerald L. Stelmack; Dipak Patel; William A. Staines; Thomas Yasumura; John E. Rash
The connexin family of proteins (Cx) that form intercellular gap junctions in vertebrates is well represented in the mammalian central nervous system. Among these, Cx30 and Cx43 are present in gap junctions of astrocytes. Cx32 is expressed by oligodendrocytes and is present in heterologous gap junctions between oligodendrocytes and astrocytes as well as at autologous gap junctions between successive myelin layers. Cx36 mRNA has been identified in neurons, and Cx36 protein has been localized at ultrastructurally defined interneuronal gap junctions. Cx26 is also expressed in the CNS, primarily in the leptomeningeal linings, but is also reported in astrocytes and in neurons of developing brain and spinal cord. To establish further the regional, cellular, and subcellular localization of Cx26 in neural tissue, we investigated this connexin in adult mouse brain and in rat brain and spinal cord using biochemical and immunocytochemical methods. Northern blotting, western blotting, and immunofluorescence studies indicated widespread and heterogeneous Cx26 expression in numerous subcortical areas of both species. By confocal microscopy, Cx26 was colocalized with both Cx30 and Cx43 in leptomeninges as well as along blood vessels in cortical and subcortical structures. It was also localized at the surface of oligodendrocyte cell bodies, where it was coassociated with Cx32. Freeze‐fracture replica immunogold labeling (FRIL) demonstrated Cx26 in most gap junctions between cells of the pia mater by postnatal day 4. By postnatal day 18 and thereafter, Cx26 was present at gap junctions between astrocytes and in the astrocyte side of most gap junctions between astrocytes and oligodendrocytes. In perinatal spinal cord and in five regions of adult brain and spinal cord examined by FRIL, no evidence was obtained for the presence of Cx26 in neuronal gap junctions. In addition to its established localization in leptomeningeal gap junctions, these results identify Cx26 as a third connexin (together with Cx30 and Cx43) within astrocytic gap junctions and suggest a further level of complexity to the heterotypic connexin channel combinations formed at these junctions. J. Comp. Neurol. 441:302–323, 2001.
Journal of Molecular Neuroscience | 2005
Kjell Fuxe; Sergi Ferré; Meritxell Canals; Maria Torvinen; Anton Terasmaa; Daniel Marcellino; Steven R. Goldberg; William A. Staines; Kirsten X. Jacobsen; Carmen Lluis; Amina S. Woods; Luigi F. Agnati; Rafael Franco
The existence of A2A-D2 heteromeric complexes is based on coimmunoprecipitation studies and on fluorescence resonance energy transfer and bioluminescence resonance energy transfer analyses. It has now become possible to show that A2A and D2 receptors also coimmunoprecipitate in striatal tissue, giving evidence for the existence of A2A-D2 heteromeric receptor complexes also in rat striatal tissue. The analysis gives evidence that these heteromers are constitutive, as they are observed in the absence of A2A and D2 agonists. The A2A-D2 heteromers could either be A2A-D2 heterodimers and/or higher-order A2A-D2 hetero-oligomers. In striatal neurons there are probably A2A-D2 heteromeric complexes, together with A2A-D2 homomeric complexes in the neuronal surface membrane. Their stoichiometry in various microdomains will have a major role in determining A2A and D2 signaling in the striatopallidal GABA neurons. Through the use of D2/D1 chimeras, evidence has been obtained that the fifth transmembrane (TM) domain and/or the 13 of the D2 receptor are part of the A2A-D2 receptor interface, where electrostatic epitope-epitope interactions involving the N-terminal part of 13 of the D2 receptor (arginine-rich epitope) play a major role, interacting with the carboxyl terminus of the A2A receptor. Computerized modeling of A2A-D2 heteromers are in line with these findings. It seems likely that A2A receptor-induced reduction of D2 receptor recognition, G protein coupling, and signaling, as well as the existence of A2A-D2 co-trafficking, are the consequence of the existence of an A2A-D2 receptor heteromer. The relevance of A2A-D2 heteromeric receptor complexes for Parkinson’s disease and schizophrenia is emphasized as well as for the treatment of these diseases. Finally, recent evidence for the existence of antagonistic A2A-D3 heteromeric receptor complexes in cotransfected cell lines has been summarized.
Brain Research Reviews | 2007
Kjell Fuxe; Annica Dahlström; Malin Höistad; Daniel Marcellino; Anders Jansson; Alicia Rivera; Zaida Díaz-Cabiale; Kirsten X. Jacobsen; Barbro Tinner-Staines; Beth Hagman; Giuseppina Leo; William A. Staines; Diego Guidolin; Jan Kehr; Susanna Genedani; Natale Belluardo; Luigi F. Agnati
After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.
The Journal of Comparative Neurology | 1996
Dan C. McIntyre; Mary Ellen Kelly; William A. Staines
Because convulsive seizures develop very rapidly from kindling sites in the anterior perirhinal cortex, we studied perirhinal efferents by using the anterograde tracer Phaseolus vulgaris leucoagglutinin (PhAL). PhAL injections into the anterior perirhinal cortex labelled a prominent network of fibers within the frontal cortex that was most dense within layers I and II and layer VI. As individual PhAL injection sites within the perirhinal cortex were restricted to one or two adjacent laminae, we were able to determine that layer V was the main source of the perirhinofrontal projection. This was confirmed by frontal cortex injections of the retrograde tracer Fluorogold (FG).
Neuroscience | 2002
C. Choeiri; William A. Staines; Claude Messier
A family of seven facilitative glucose transporters (Glut1-5, 7 and 8) mediates the cellular uptake of glucose. In the brain, Glut2, Glut5 and Glut8 are found at relatively low levels whereas Glut1, Glut3 and Glut4 were reported in abundance in several brain regions. Using immunofluorescence, this study investigated, compared and quantified the localization of the brain major glucose transporters, Glut1, Glut3 and Glut4, in the different cerebral areas of CD1 mice. Most of the staining of Glut1, Glut3 and Glut4 in the mouse brain coincides with observations made in rats. The results confirm the cortical neuropil distribution of Glut3, the prominence of this transporter in the mossy fiber field of the hippocampus and the Glut3 and Glut4 immunostaining of the hippocampal pyramidal cell layer. The present study also reports novel localizations of the transporters such as the presence of Glut3 in neuronal perikarya, Glut4-labeled neurons in the CA3 of the hippocampus and the subiculum. In the cerebellum, Glut3 shows subcellular localization to the base of the Purkinje cell bodies near the axon hillock. Furthermore, an important population of Golgi cells was found to be strongly immunostained for Glut4 in the granular cell layer of the cerebellum. The quantification results suggest that the relative abundance of Glut1 in the frontal and motor cortices coincides well with the high-energy demands of these brain regions. However, the Glut4-selective abundance in cerebral motor areas supports its suggested role in providing the energy needed for the control of the motor activity. The reported neuropil distribution of Glut3 seems to uphold its suggested role in synaptic energy provision and neurotransmitter synthesis. We conclude that the cellular and regional distributions of the glucose transporters in the rodent brain seem to be relevant to their corresponding functions.
Gastroenterology | 1993
Kim Nichols; William A. Staines; Anthony Krantis
BACKGROUND Nitric oxide is an inhibitory transmitter of nonadrenergic, noncholinergic neurons and is purported to be an endothelium-derived relaxant-type factor in the mammalian gut. This study aimed to provide a complete report on the distribution of NO synthase in the rat small and large intestine. METHODS NO synthase was visualized histochemically through this enzymes reduced nicotinamide adenine dinucleotide phosphate diaphorase activity and the distribution of staining within the gut wall. RESULTS The presence of NO synthase activity in myenteric neurons and their efferents to the circular muscle was confirmed. The largest proportion of stained cells per ganglion was found in the ileum, and the smallest proportion was in the colon. Stained neural elements were also found within the submucosa throughout the intestine. Stained cells within the myenteric and submucous nerve plexi displayed both type I and type II morphologies, with the latter being more numerous. In addition to neural staining, submucosal arterioles showed a regular pattern of small patches of staining unrelated to any perivascular innervation. CONCLUSIONS These findings indicate an extensive neural and vascular localization of NO generation potential throughout the wall of the rat intestine, thus providing a structural basis for the functional diversity of NO.
Experimental Cell Research | 2008
Jedon Sequeira; Gino Boily; Stephanie Bazinet; Sarah Saliba; Xiaohong He; Karen Jardine; Christopher Kennedy; William A. Staines; Colin G. Rousseaux; Rudi Mueller; Michael W. McBurney
The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease.
Neuroscience | 1994
William A. Staines; Dante J. Morassutti; K.R. Reuhl; A.I. ally; M.W. McBurney
Treatment of P19 embryonal carcinoma cells with retinoic acid induces their differentiation into a population of cells consisting of neurons and other cell types normally derived from neuroectoderm. We used immunohistological and histochemical techniques to identify some of the neurotransmitters in the P19-derived neurons. The majority of neurons contained GABA, glutamic acid decarboxylase, and GABA-transaminase. Neuropeptide Y and somatostatin were less frequently found and both were partially co-expressed with GABA and with one another. Smaller numbers of cells were positive for tyrosine hydroxylase, DOPA decarboxylase, serotonin, calcitonin gene-related peptide, galanin and substance P. The variety and proportions of cells with different transmitter types were reproducible from one experiment to the next and varied very little over 40 days in culture except for cells containing enkephalin, which were abundant only in mature cultures of 32 days or more. Synapses formed between neurons and some contained both small clear and large dense-core vesicles within the presynaptic bouton. Because GABA, neuropeptide Y and somatostatin are abundant in P19-derived neurons as well as in embryonic neurons in rostral regions of the mammalian CNS, we suggest that the developmental events occurring in P19 cell cultures closely resemble those of the embryonic neuroectoderm.