Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William B. Rossow is active.

Publication


Featured researches published by William B. Rossow.


Geophysical Research Letters | 2012

Changes in land surface water dynamics since the 1990s and relation to population pressure

C. Prigent; Fabrice Papa; F. Aires; C. Jimenez; William B. Rossow; Elaine Matthews

[1] We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276.


Journal of Geophysical Research | 2008

Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin

Frédéric Frappart; Fabrice Papa; James S. Famiglietti; Catherine Prigent; William B. Rossow; Frédérique Seyler

Spatiotemporal variations of water volume over inundated areas located in a large river basin have been determined using combined observations from a multisatellite inundation data set, the TOPEX/POSEIDON (T/P) altimetry satellite, and in situ hydrographic stations for the water levels over rivers and floodplains. We computed maps of monthly surface water volume change over the period of common availability of T/P and the multisatellite data (1993–2000). The basin of the Negro River, the largest tributary in terms of discharge to the Amazon River, was selected as a test site. A strong seasonal signal is observed with minima in October and maxima in June. A strong interannual component is also present, particularly important during ENSO years. The surface water change was estimated to be 167 ± 39 km3 between October 1995 (low water) and June 1996 (high water). This result is consistent with previous estimates obtained for the 1995–1996 hydrological cycle over the same area using the JERS mosaic data. The surface water volume change is then compared to the total water volume change inferred from the GRACE satellite for an average annual cycle. The difference between the surface storage change and the total storage change derived from GRACE was computed to estimate the contribution of the soil moisture and groundwater to the total storage change. Our study supports the hypothesis that total water storage is almost equally partitioned between surface water and the combination of soil moisture and groundwater for the Negro River basin. The water volume changes are also evaluated using in situ discharge measurements and the GPCP precipitation product (correlation of 0.61). The results show the high potential for the new technique to provide valuable information to improve our understanding of large river basin hydrologic processes.


Journal of Geophysical Research | 2012

The Continual Intercomparison of Radiation Codes: Results from Phase I

Lazaros Oreopoulos; Eli J. Mlawer; Jennifer Delamere; Timothy R. Shippert; Jason N. S. Cole; Boris Fomin; Michael J. Iacono; Zhonghai Jin; Jiangning Li; James Manners; P. Räisänen; Fred G. Rose; Yuanchong Zhang; Michael J. Wilson; William B. Rossow

[1] We present results from Phase I of the Continual Intercomparison of Radiation Codes (CIRC), intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in global climate models and other atmospheric applications. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalog of cases. The seven CIRC Phase I baseline cases, five cloud free and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements program that satisfy the goals of Phase I, namely, to examine RT model performance in realistic, yet not overly complex, atmospheric conditions. Besides the seven baseline cases, additional idealized “subcases” are also employed to facilitate interpretation of model errors. In addition to quantifying individual model performance with respect to reference line-by-line calculations, we also highlight RT code behavior for conditions of doubled CO2, issues arising from spectral specification of surface albedo, and the impact of cloud scattering in the thermal infrared. Our analysis suggests that improvements in the calculation of diffuse shortwave flux, shortwave absorption, and shortwave CO2 forcing as well as in the treatment of spectral surface albedo should be considered for many RT codes. On the other hand, longwave calculations are generally in agreement with the reference results. By expanding the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT codes.


Nature | 2015

Increases in tropical rainfall driven by changes in frequency of organized deep convection

Jackson Tan; Christian Jakob; William B. Rossow; George Tselioudis

Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as ‘wet-gets-wetter’ and ‘warmer-gets-wetter’. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.


Journal of Geophysical Research | 2012

Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal

Fabrice Papa; Sujit Kumar Bala; Rajesh Pandey; Fabien Durand; V. V. Gopalakrishna; Atiqur Rahman; William B. Rossow

This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.


Geophysical Research Letters | 2008

Variations of surface water extent and water storage in large river basins: A comparison of different global data sources

Fabrice Papa; Andreas Güntner; Frédéric Frappart; Catherine Prigent; William B. Rossow

[1] For the period 2003–2004 and for six large river basins, the present study compares monthly time series of multi-satellite-derived surface water extent with other independent global data sets related to land water dynamics, such as water mass variations monitored by GRACE, simulated surface and total water storage from WGHM, water levels from altimetry, and GPCP precipitation estimates. In general, the datasets show a strong agreement with each other at seasonal timescale. In particular, over the Amazon and the Ganges basins, analysis of seasonal phase differences and hysteresis behavior between surface water extent, water level and storage reveal the complex relations between water extent and storage variations and the different effects of water transport processes within large river basins. The results highlight the value of combining multi-satellite techniques for retrieving surface water


Journal of Geophysical Research | 2007

Ob' River flood inundations from satellite observations: A relationship with winter snow parameters and river runoff

Fabrice Papa; C. Prigent; William B. Rossow

2.6 10 5 km 2 , consistent with previous independent static or satellites-derived estimates. The maximum in yearly inundation, showing propagation from south to north between April and June, exhibits strong seasonal and inter-annual variations. The consistency of the inundation estimates is then analyzed at local or basin-wide scale using different in situ or satellite-derived snow and runoff parameters. The results show a strong relationship between the inundation extent and the snowmelt date, the snowpack depth at three in situ stations located in the southern part of the basin. Over the northern part, results show that flooding is more closely linked to the amount of water coming downstream from the southern part of the basin. A close systematic relationship is also found between the inundation extent and the local in situ runoff at six locations as well as with the altimeterderived discharge measured at the Ob estuary. This case study evaluation shows the potential of these data sets to provide consistent information about the seasonal and interannual variations of inundation over a major Boreal river basin. These results also suggest new potential to improve the description of the snow-inundation-runoff relationship that are fundamental for climate and hydrological models.


IEEE Geoscience and Remote Sensing Letters | 2012

Uncertainties in Mean River Discharge Estimates Associated With Satellite Altimeter Temporal Sampling Intervals: A Case Study for the Annual Peak Flow in the Context of the Future SWOT Hydrology Mission

Fabrice Papa; Sylvain Biancamaria; C. Lion; William B. Rossow

In the context of the Surface Water and Ocean Topography (SWOT) mission, investigations are needed to refine the error budget for discharge estimations. This letter proposes to evaluate the uncertainties in the estimation of mean river discharge around the seasonal peak flow due to the satellite temporal sampling intervals. The daily time series of in situ river discharge measurements for 11 large rivers are used to analyze the uncertainties associated with the sampling of four altimeter repeat cycles: the 35-, 22-, and 10-day repeat cycles in the nadir-looking configuration of current altimeters and the 22-day repeat cycle in the SWOT wide-swath configuration, where a given location is observed every cycle twice at the equator and six times in higher latitudes. Results show that, for boreal rivers, a sampling of 35 or 22 days from current nadir altimeters is too coarse to give an accurate estimate of the average discharge around the seasonal peak flow, whereas for all watersheds, the uncertainties associated with a 10-day repeat cycle or the 22-day repeat cycle in the SWOT wide-swath configuration are within the range of acceptable uncertainties (15%-20%). In addition, the absolute maximum mean discharge uncertainties associated with the SWOT time sampling have a strong relationship with the variance of the river discharge. This suggests that, rather than the commonly used basin area, the magnitude of the short-time-scale variance of the discharge could be used as a predictor of the uncertainties associated with temporal sampling intervals when estimating average discharge around the seasonal peak flow.


Earth System Science Data | 2018

The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses

Marc Schröder; Maarit Lockhoff; Frank Fell; John M. Forsythe; Tim Trent; Ralf Bennartz; Eva Borbas; Michael G. Bosilovich; Elisa Castelli; Hans Hersbach; Misako Kachi; Shinya Kobayashi; E. Robert Kursinski; Diego Loyola; Carl Mears; Rene Preusker; William B. Rossow; Suranjana Saha

The Global Energy and Water cycle Exchanges (GEWEX) Data and Assessments Panel (GDAP) initiated the GEWEX Water Vapor Assessment (G-VAP), which has the main objectives to quantify the current state of art in water vapour products being constructed for climate applications and to support the selection process of suitable water vapour products by GDAP for its production of globally consistent water and energy cycle products. During the construction of the G-VAP data archive, freely available and mature satellite and reanalysis data records with a minimum temporal coverage of 10 years were considered. The archive contains total column water vapour (TCWV) as well as specific humidity and temperature at four pressure levels (1000, 700, 500, 300 hPa) from 22 different data records. All data records were remapped to a regular longitude/latitude grid of 2°x2°. The archive consists of four different folders: 22 TCWV data records covering the period 2003-2008, 11 TCWV data records covering the period 1988-2008, as well as seven specific humidity and seven temperature data records covering the period 1988-2009. The G-VAP data archive is referenced under the following digital object identifier (doi): http://dx.doi.org/10.5676/EUM SAF CM/GVAP/V001. Within G-VAP, the characterisation of water vapour products is, among other ways, achieved through intercomparisons of the considered data records, as a whole and grouped into three classes of predominant retrieval condition: clear-sky, cloudy-sky and all-sky. Associated results are shown using the 22 TCWV data records. The standard deviations among the 22 TCWV data records have been analysed and exhibit distinct maxima over central Africa and the tropical warm pool (in absolute terms) as well as over the poles and mountain regions (in relative terms). The variability in TCWV within each class can be large and prohibits conclusions on systematic differences in TCWV between the classes.


Monthly Weather Review | 2018

The Interaction between Deep Convection and Easterly Wave Activity over Africa: Convective Transitions and Mechanisms

Ademe Mekonnen; William B. Rossow

AbstractRecent work using observational data from the International Satellite Cloud Climatology Project (ISCCP) and reanalysis products suggests that African easterly waves (AEWs) form in associati...

Collaboration


Dive into the William B. Rossow's collaboration.

Top Co-Authors

Avatar

Fabrice Papa

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Catherine Prigent

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Frappart

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. Prigent

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Jimenez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédérique Seyler

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

George Tselioudis

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Marie-Paule Bonnet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge