William B. Tu
Princess Margaret Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William B. Tu.
Biochimica et Biophysica Acta | 2015
William B. Tu; Sara Helander; Robert Pilstål; K. Ashley Hickman; Corey Lourenco; Igor Jurisica; Brian Raught; Björn Wallner; Maria Sunnerhagen; Linda Penn
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Mycs roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Mycs transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Journal of Proteomics | 2015
Dharmendra Dingar; Manpreet Kalkat; Pak-Kei Chan; Tharan Srikumar; Swneke D. Bailey; William B. Tu; Etienne Coyaud; Romina Ponzielli; Max Kolyar; Igor Jurisica; Annie Huang; Mathieu Lupien; Linda Penn; Brian Raught
UNLABELLED The BioID proximity-based biotin labeling technique was recently developed for the characterization of protein-protein interaction networks [1]. To date, this method has been applied to a number of different polypeptides expressed in cultured cells. Here we report the adaptation of BioID to the identification of protein-protein interactions surrounding the c-MYC oncoprotein in human cells grown both under standard culture conditions and in mice as tumor xenografts. Notably, in vivo BioID yielded >100 high confidence MYC interacting proteins, including >30 known binding partners. Putative novel MYC interactors include components of the STAGA/KAT5 and SWI/SNF chromatin remodeling complexes, DNA repair and replication factors, general transcription and elongation factors, and transcriptional co-regulators such as the DNA helicase protein chromodomain 8 (CHD8). Providing additional confidence in these findings, ENCODE ChIP-seq datasets highlight significant coincident binding throughout the genome for the MYC interactors identified here, and we validate the previously unreported MYC-CHD8 interaction using both a yeast two hybrid analysis and the proximity-based ligation assay. In sum, we demonstrate that BioID can be utilized to identify bona fide interacting partners for a chromatin-associated protein in vivo. This technique will allow for a much improved understanding of protein-protein interactions in a previously inaccessible biological setting. BIOLOGICAL SIGNIFICANCE The c-MYC (MYC) oncogene is a transcription factor that plays important roles in cancer initiation and progression. MYC expression is deregulated in more than 50% of human cancers, but the role of this protein in normal cell biology and tumor progression is still not well understood, in part because identifying MYC-interacting proteins has been technically challenging: MYC-containing chromatin-associated complexes are difficult to isolate using traditional affinity purification methods, and the MYC protein is exceptionally labile, with a half-life of only ~30 min. Developing a new strategy to gain insight into MYC-containing protein complexes would thus mark a key advance in cancer research. The recently described BioID proximity-based labeling technique represents a promising new complementary approach for the characterization of protein-protein interactions (PPIs) in cultured cells. Here we report that BioID can also be used to characterize protein-protein interactions for a chromatin-associated protein in tumor xenografts, and present a comprehensive, high confidence in vivo MYC interactome. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Genes | 2017
Manpreet Kalkat; Jason De Melo; Katherine Hickman; Corey Lourenco; Cornelia Redel; Diana Resetca; Aaliya Tamachi; William B. Tu; Linda Z. Penn
MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.
Cancer Research | 2013
Amanda R. Wasylishen; Michelle Chan-Seng-Yue; Christina Bros; Dharmendra Dingar; William B. Tu; Manpreet Kalkat; Pak Kei Chan; Peter Mullen; Ling Huang; Natalie Meyer; Brian Raught; Paul C. Boutros; Linda Z. Penn
Despite its central role in human cancer, MYC deregulation is insufficient by itself to transform cells. Because inherent mechanisms of neoplastic control prevent precancerous lesions from becoming fully malignant, identifying transforming alleles of MYC that bypass such controls may provide fundamental insights into tumorigenesis. To date, the only activated allele of MYC known is T58A, the study of which led to identification of the tumor suppressor FBXW7 and its regulator USP28 as a novel therapeutic target. In this study, we screened a panel of MYC phosphorylation mutants for their ability to promote anchorage-independent colony growth of human MCF10A mammary epithelial cells, identifying S71A/S81A and T343A/S344A/S347A/S348A as more potent oncogenic mutants compared with wild-type (WT) MYC. The increased cell-transforming activity of these mutants was confirmed in SH-EP neuroblastoma cells and in three-dimensional MCF10A acini. Mechanistic investigations initiated by a genome-wide mRNA expression analysis of MCF10A acini identified 158 genes regulated by the mutant MYC alleles, compared with only 112 genes regulated by both WT and mutant alleles. Transcriptional gain-of-function was a common feature of the mutant alleles, with many additional genes uniquely dysregulated by individual mutant. Our work identifies novel sites of negative regulation in MYC and thus new sites for its therapeutic attack.
Genome Biology | 2016
Scott M. Lundberg; William B. Tu; Brian Raught; Linda Z. Penn; Michael M. Hoffman; Su-In Lee
A cell’s epigenome arises from interactions among regulatory factors—transcription factors and histone modifications—co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative approaches. We experimentally validated one of the previously unreported interactions, MYC–HCFC1. An interactive visualization tool is available at http://chromnet.cs.washington.edu.
Cell Cycle | 2016
Angelina Stojanova; William B. Tu; Romina Ponzielli; Max Kotlyar; Pak-Kei Chan; Paul C. Boutros; Fereshteh Khosravi; Igor Jurisica; Brian Raught; Linda Z. Penn
ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.
Methods of Molecular Biology | 2013
Romina Ponzielli; William B. Tu; Igor Jurisica; Linda Z. Penn
In this chapter, we discuss in detail two essential methods used to evaluate the interaction of Myc with another protein of interest: co-immunoprecipitation (Co-IP) and in vitro pull-down assays. Co-IP is a method that, by immunoaffinity, allows the identification of protein-protein interactions within cells. We provide methods to conduct Co-IPs from whole-cell extracts as well as cytoplasmic and nuclear-enriched fractions. By contrast, the pull-down assay evaluates whether a bait protein that is bound to a solid support can specifically interact with a prey protein that is in solution. We provide methods to conduct in vitro pull-downs and further detail how to use this assay to distinguish whether a protein-protein interaction is direct or indirect. We also discuss methods used to screen for Myc interactors and provide an in silico strategy to help prioritize hits for further validation using the described Co-IP and in vitro pull-down assays.
Nature Communications | 2018
Dharmendra Dingar; William B. Tu; Diana Resetca; Corey Lourenco; Aaliya Tamachi; Jason De Melo; Kathleen E. Houlahan; Manpreet Kalkat; Pak-Kei Chan; Paul C. Boutros; Brian Raught; Linda Z. Penn
The c-MYC (MYC) oncoprotein is deregulated in over 50% of cancers, yet regulatory mechanisms controlling MYC remain unclear. To this end, we interrogated the MYC interactome using BioID mass spectrometry (MS) and identified PP1 (protein phosphatase 1) and its regulatory subunit PNUTS (protein phosphatase-1 nuclear-targeting subunit) as MYC interactors. We demonstrate that endogenous MYC and PNUTS interact across multiple cell types and that they co-occupy MYC target gene promoters. Inhibiting PP1 by RNAi or pharmacological inhibition results in MYC hyperphosphorylation at multiple serine and threonine residues, leading to a decrease in MYC protein levels due to proteasomal degradation through the canonical SCFFBXW7 pathway. MYC hyperphosphorylation can be rescued specifically with exogenous PP1, but not other phosphatases. Hyperphosphorylated MYC retained interaction with its transcriptional partner MAX, but binding to chromatin is significantly compromised. Our work demonstrates that PP1/PNUTS stabilizes chromatin-bound MYC in proliferating cells.Deregulated MYC activity is oncogenic and is deregulated in a large fraction of human cancers. Here the authors find that protein phosphatase 1 and its regulatory subunit PNUTS controls MYC stability and its interaction with chromatin.
bioRxiv | 2015
Scott M. Lundberg; William B. Tu; Brian Raught; Linda Z. Penn; Michael M. Hoffman; Su-In Lee
Introduction: A cell’s epigenome arises from interactions among regulatory factors — transcription factors, histone modifications, and other DNA-associated proteins — co-localized at particular genomic regions. Identifying the network of interactions among regulatory factors, the chromatin network, is of paramount importance in understanding epigenome regulation. Methods: We developed a novel computational approach, ChromNet, to infer the chromatin network from a set of ChIP-seq datasets. ChromNet has four key features that enable its use on large collections of ChIP-seq data. First, rather than using pairwise co-localization of factors along the genome, ChromNet identifies conditional dependence relationships that better discriminate direct and indirect interactions. Second, our novel statistical technique, the group graphical model, improves inference of conditional dependence on highly correlated datasets. Such datasets are common because some transcription factors form a complex and the same transcription factor is often assayed in different laboratories or cell types. Third, ChromNet’s computationally efficient method and the group graphical model enable the learning of a joint network across all cell types, which greatly increases the scope of possible interactions. We have shown that this results in a significantly higher fold enrichment for validated protein interactions. Fourth, ChromNet provides an efficient way to identify the genomic context that drives a particular network edge, which provides a more comprehensive understanding of regulatory factor interactions. Results: We applied ChromNet to all available ChIP-seq data from the ENCODE Project, consisting of 1451 ChIP-seq datasets, which revealed previously known physical interactions better than alternative approaches. ChromNet also identified previously unreported regulatory factor interactions. We experimentally validated one of these interactions, between the MYC and HCFC1 transcription factors. Discussion: ChromNet provides a useful tool for understanding the interactions among regulatory factors and identifying novel interactions. We have provided an interactive web-based visualization of the full ENCODE chromatin network and the ability to incorporate custom datasets at http://chromnet.cs.washington.edu.
Molecular Cancer Research | 2015
Corey Lourenco; Amanda Wasylishen; Michelle Chan-Seng-Yue; Christina Bros; Dharmendra Dingar; William B. Tu; Manpreet Kalkat; Pak-Kei Chan; Peter J. Mullen; Brian Raught; Paul C. Boutros; Linda Z. Penn
The c-MYC (MYC) oncogene plays an important role in tumorigenesis and is implicated in >50% of all human cancers. Deregulation of MYC can occur through abnormally high expression levels, but also through oncogenic lesions in upstream signaling cascades. The study of these signaling pathways have provided an alternative approach for the development of MYC-targeted therapeutics. For example, the study of post-translational modifications (PTMs) of MYC, such as P-T58 and the T58A gain-of-function mutant, identified FBXW7 as a tumor suppressor and the deubiquitinating enzyme USP28 as a therapeutic target. We considered that MYC is highly modified post-translationally and that unknown mechanistic pathways may be modifying residues, in addition to T58, in order to control MYC stability and/or function. These undiscovered pathways may therefore provide additional opportunities for the development of MYC-targeted therapeutics. These considerations led to recent work in the Penn lab that uncovered clusters of negatively regulating residues of MYC function. These residues include S71/S81, a cluster of residues referred to as MYC-4 (T343, S344, S347 and S348) and a cluster of 6 lysine residues (6K) at the C-terminal end of MYC (K298, K317, K323, K326, K341 and K355). These negatively regulating residues were characterized using alanine (S71/S81 and 340 cluster) and arginine (C-terminal lysines) substitution mutants in our established transformation assays. The S71/S81A and MYC-4A mutants scored with having gain-of-function activity in comparison to wild-type MYC in multiple transformation assays including growth in soft agar and the disruption of regular acini formation using a normal, immortalized MCF10A cell line. In addition, these mutants were shown to regulate additional genes compared to wild-type MYC using genome-wide mRNA expression analysis of MCF10A acini, suggesting that these MYC proteins have gained additional transcriptional targets. Additionally, substitution of the C-terminal lysine residues with arginine (6KR) also revealed gain-of-function activity. 6KR expressing MCF10A and SH-EP cells had increased anchorage-independent growth compared to cells expressing wild-type MYC and was also more potent in promoting xenograft tumor growth of Rat1A and SH-EP cells. Interestingly, all three mutants do not have extended half-lives as seen with T58A, suggesting that functional activity and not stability is contributing to these transformative phenotypes. The above mutants reveal that each of S71/S81, MYC-4 and C-terminal 6K residues are critically important for the negative regulation of MYC-induced transformation. To further explore these regions of MYC, we used mass spectrometry to identify post-translational modifications that occurred on MYC in growing cells. These data confirm phosphorylation events on S71/81 as well as at MYC-4A. Strikingly, three modifications were directly observed on three of the six lysine residues; acetylation of lysine 323, ubiquitylation of lysine 355 and SUMOylation of lysine 326. The importance of these modifications and the roles that these modifications have in regulating MYC activity are currently under investigation using our established transformation assays. I now aim to understand the contribution of single or multiple modifications within the indicated clusters and how these modifications modulate MYC activity. Citation Format: Corey Lourenco, Amanda Wasylishen, Michelle Chan-Seng-Yue, Christina Bros, Dharmendra Dingar, William Tu, Manpreet Kalkat, Pak-Kei Chan, Peter Mullen, Brian Raught, Paul Boutros, Linda Penn. The myc post-translational landscape: How novel gain-of-function mutants are revealing new stability and functional regulatory systems. [abstract]. In: Proceedings of the AACR Special Conference on Myc: From Biology to Therapy; Jan 7-10, 2015; La Jolla, CA. Philadelphia (PA): AACR; Mol Cancer Res 2015;13(10 Suppl):Abstract nr A10.