William Branton
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Branton.
EMBO Reports | 2016
Anil Kumar; Shangmei Hou; Adriana M. Airo; Daniel Limonta; Valeria Mancinelli; William Branton; Christopher Power; Tom C. Hobman
Zika virus is an emerging mosquito‐borne pathogen that is associated with Guillain–Barré syndrome in adults and microcephaly and other neurological defects in newborns. Despite being declared an international emergency by the World Health Organization, comparatively little is known about its biology. Here, we investigate the strategies employed by the virus to suppress the host antiviral response. We observe that once established, Zika virus infection is impervious to interferon treatment suggesting that the virus deploys effective countermeasures to host cell defences. This is confirmed by experiments showing that Zika virus infection impairs the induction of type‐I interferon as well as downstream interferon‐stimulated genes. Multiple viral proteins affect these processes. Virus‐mediated degradation of STAT2 acts to reduce type‐I and type‐III interferon‐mediated signaling. Further, the NS5 of Zika virus binds to STAT2, and its expression is correlated with STAT2 degradation by the proteasome. Together, our findings provide key insights into how Zika virus blocks cellular defense systems. This in turn is important for understanding pathogenesis and may aid in designing antiviral therapies.
PLOS ONE | 2013
William Branton; Kristofor K. Ellestad; Ferdinand Maingat; B. Matt Wheatley; Erling W. Rud; René L. Warren; Robert A. Holt; Michael G. Surette; Christopher Power
The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain’s microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain.
Journal of Neuroinflammation | 2013
Vijay Ramaswamy; John G. Walsh; D. Barry Sinclair; Edward S. Johnson; Richard Tang-Wai; B. Matt Wheatley; William Branton; Ferdinand Maingat; Thomas Snyder; Donald W. Gross; Christopher Power
BackgroundRasmussen’s encephalitis (RE) is an inflammatory encephalopathy of unknown cause defined by seizures with progressive neurological disabilities. Herein, the pathogenesis of RE was investigated focusing on inflammasome activation in the brain.MethodsPatients with RE at the University of Alberta, Edmonton, AB, Canada, were identified and analyzed by neuroimaging, neuropsychological, molecular, and pathological tools. Primary human microglia, astrocytes, and neurons were examined using RT-PCR, enzyme-linked immunosorbent assay (ELISA), and western blotting.ResultsFour patients with RE were identified at the University of Alberta. Magnetic resonance imaging (MRI) disclosed increased signal intensities in cerebral white matter adjacent to cortical lesions of RE patients, accompanied by a decline in neurocognitive processing speed (P <0.05). CD3ϵ, HLA-DRA, and TNFα together with several inflammasome-associated genes (IL-1β, IL-18, NLRP1, NLRP3, and CASP1) showed increased transcript levels in RE brains compared to non-RE controls (n = 6; P <0.05). Cultured human microglia displayed expression of inflammasome-associated genes and responded to inflammasome activators by releasing IL-1β, which was inhibited by the caspase inhibitor, zVAD-fmk. Major histocompatibility complex (MHC) class II, IL-1β, caspase-1, and alanine/serine/cysteine (ASC) immunoreactivity were increased in RE brain tissues, especially in white matter myeloid cells, in conjunction with mononuclear cell infiltration and gliosis. Neuroinflammation in RE brains was present in both white matter and adjacent cortex with associated induction of inflammasome components, which was correlated with neuroimaging and neuropsychological deficits.ConclusionInflammasome activation likely contributes to the disease process underlying RE and offers a mechanistic target for future therapeutic interventions.
Scientific Reports | 2016
William Branton; Jian-Qiang Lu; Michael G. Surette; Robert A. Holt; J. Lind; Jon D. Laman; Christopher Power
Microbial communities reside in healthy tissues but are often disrupted during disease. Bacterial genomes and proteins are detected in brains from humans, nonhuman primates, rodents and other species in the absence of neurological disease. We investigated the composition and abundance of microbiota in frozen and fixed autopsied brain samples from patients with multiple sclerosis (MS) and age- and sex-matched nonMS patients as controls, using neuropathological, molecular and bioinformatics tools. 16s rRNA sequencing revealed Proteobacteria to be the dominant phylum with restricted diversity in cerebral white matter (WM) from MS compared to nonMS patients. Both clinical groups displayed 1,200–1,400 bacterial genomes/cm3 and low bacterial rRNA:rDNA ratios in WM. RNAseq analyses showed a predominance of Proteobacteria in progressive MS patients’ WM, associated with increased inflammatory gene expression, relative to a broader range of bacterial phyla in relapsing-remitting MS patients’ WM. Although bacterial peptidoglycan (PGN) and RNA polymerase beta subunit immunoreactivities were observed in all patients, PGN immunodetection was correlated with demyelination and neuroinflammation in MS brains. Principal component analysis revealed that demyelination, PGN and inflammatory gene expression accounted for 86% of the observed variance. Thus, inflammatory demyelination is linked to an organ-specific dysbiosis in MS that could contribute to underlying disease mechanisms.
Journal of Neuroimmune Pharmacology | 2017
Manmeet Mamik; Elizabeth Hui; William Branton; Brienne McKenzie; Jesse Chisholm; Éric A. Cohen; Christopher Power
Human Immunodeficiency virus (HIV) enters the brain soon after seroconversion and induces chronic neuroinflammation by infecting and activating brain macrophages. Inflammasomes are cytosolic protein complexes that mediate caspase-1 activation and ensuing cleavage and release of IL-1β and −18 by macrophages. Our group recently showed that HIV-1 infection of human microglia induced inflammasome activation in NLRP3-dependent manner. The HIV-1 viral protein R (Vpr) is an accessory protein that is released from HIV-infected cells, although its effects on neuroinflammation are undefined. Infection of human microglia with Vpr-deficient HIV-1 resulted in reduced caspase-1 activation and IL-1β production, compared to cells infected with a Vpr-encoding HIV-1 virus. Vpr was detected at low nanomolar concentrations in cerebrospinal fluid from HIV-infected patients and in supernatants from HIV-infected primary human microglia. Exposure of human macrophages to Vpr caused caspase-1 cleavage and IL-1β release with reduced cell viability, which was dependent on NLRP3 expression. Increased NLRP3, caspase-1, and IL-1β expression was evident in HIV-1 Vpr transgenic mice compared to wild-type littermates, following systemic immune stimulation. Treatment with the caspase-1 inhibitor, VX-765, suppressed NLRP3 expression with reduced IL-1β expression and associated neuroinflammation. Neurobehavioral deficits showed improvement in Vpr transgenic animals treated with VX-765. Thus, Vpr-induced NLRP3 inflammasome activation, which contributed to neuroinflammation and was abrogated by caspase-1 inhibition. This study provides a new therapeutic perspective for HIV-associated neuropsychiatric disease.
The Journal of Infectious Diseases | 2013
Stacey N. Reinke; Lothar Resch; Ferdinand Maingat; William Branton; Alan C. Jackson; Robert A. Holt; Carolyn M. Slupsky; Thomas J. Marrie; Brian D. Sykes; Christopher Power
Rabies virus (RV) infection is a fatal nervous system disorder. We describe a patient who died of rabies despite a neuroprotective intervention. Neuropathology showed neuronal loss with abundant RV antigen, genome, and Negri bodies, accompanied by intense neuroinflammation, including by CD8(+) T lymphocyte infiltrates. Deep sequencing and real-time reverse-transcription polymerase chain reaction revealed RNA encoding a bat RV strain together with inflammatory gene induction. RV-infected brain demonstrated reduced neuronal metabolites with an anaerobic metabolic profile by nuclear magnetic resonance (NMR) spectroscopy. These multiplatform studies highlight the extent of ongoing viral replication coupled with inflammation in treated rabies, indicative of a neurological immune reconstitution inflammatory syndrome.
The FASEB Journal | 2013
Maria J. Polyak; Pornpun Vivithanaporn; Ferdinand Maingat; John G. Walsh; William Branton; Éric A. Cohen; Rick B. Meeker; Christopher Power
The lentiviruses, human and feline immunodeficiency viruses (HIV‐1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon‐regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon‐associated genes, Mx1 and CD317, in brains from HIV‐infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV‐1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIVch or FIVncsu, revealed that FIVch‐infected animals displayed deficits in memory and motor speed compared with the FIVncsu‐ and mock‐infected groups (P<0.05). TNF‐α, IL‐1β, and CD40 expression was increased in the brains of FIVch‐infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIVncsu‐infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIVch‐infected animals compared with mock‐ and FIVncsu‐infected animals (P<0.05). Lentiviral infections induce type 1 interferon‐regulated gene expression in microglia in a viral diversity‐dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.—Polyak, M. J., Vivithanaporn, P., Maingat, F. G., Walsh, J. G., Branton, W., Cohen, E. A., Meeker, R., Power, C. Differential type 1 interferon‐regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J. 27, 2829‐2844 (2013). www.fasebj.org
Brain Behavior and Immunity | 2014
Shaona Acharjee; William Branton; Pornpun Vivithanaporn; Ferdinand Maingat; Amber M. Paul; Peter Dickie; Glen B. Baker; Christopher Power
BACKGROUND Neuropsychiatric disorders during HIV/AIDS are common although the contribution of HIV-1 infection within the brain, and in particular individual HIV-1 proteins, to the development of these brain disorders is unknown. Herein, an in vivo transgenic mouse model was generated in which the HIV-1 Nef protein was expressed in microglia cells, permitting investigation of neurobehavioral phenotypes and associated cellular and molecular properties. METHODS Transgenic (Tg) mice that expressed full length HIV-1 nef under the control of the c-fms promoter and wildtype (Wt) littermates were investigated using different measures of neurobehavioral performance including locomotory, forced swim (FST), elevated plus maze (EPM) and T-maze tests. Host gene and transgene expression were assessed by RT-PCR, immunoblotting, enzymatic activity and immunohistochemistry. Biogenic amine levels were measured by HPLC with electrochemical detection. RESULTS Tg animals exhibited Nef expression in brain microglia and cultured macrophages. Tg males displayed hyperactive behaviors including augmented locomotor activity, decreased immobility in the FST and increased open-arm EPM exploration compared to Wt littermates (p<0.05). Tg animals showed increased CCL2 expression with concurrent IFN-α suppression in striatum compared with Wt littermates (p<0.05). Dopamine levels, MAO activity and the dopamine transporter (DAT) expression were reduced in the striatum of Tg animals (p<0.05). CONCLUSIONS HIV-1 Nef expression in microglia induced CCL2 expression together with disrupting striatal dopaminergic transmission, resulting in hyperactive behaviors which are observed in mania and other psychiatric comorbidities among HIV-infected persons. These findings emphasize the selective effects of individual viral proteins in the brain and their participation in neuropathogenesis.
The Journal of Neuroscience | 2016
Manmeet Mamik; Eugene L. Asahchop; Wing Fuk Chan; Yu Zhu; William Branton; Brienne McKenzie; Éric A. Cohen; Christopher Power
HIV-1 infection of the brain causes the neurodegenerative syndrome HIV-associated neurocognitive disorders (HAND), for which there is no specific treatment. Herein, we investigated the actions of insulin using ex vivo and in vivo models of HAND. Increased neuroinflammatory gene expression was observed in brains from patients with HIV/AIDS. The insulin receptor was detected on both neurons and glia, but its expression was unaffected by HIV-1 infection. Insulin treatment of HIV-infected primary human microglia suppressed supernatant HIV-1 p24 levels, reduced CXCL10 and IL-6 transcript levels, and induced peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. Insulin treatment of primary human neurons prevented HIV-1 Vpr-mediated cell process retraction and death. In feline immunodeficiency virus (FIV) infected cats, daily intranasal insulin treatment (20.0 IU/200 μl for 6 weeks) reduced CXCL10, IL-6, and FIV RNA detection in brain, although PPAR-γ in glia was increased compared with PBS-treated FIV+ control animals. These molecular changes were accompanied by diminished glial activation in cerebral cortex and white matter of insulin-treated FIV+ animals, with associated preservation of cortical neurons. Neuronal counts in parietal cortex, striatum, and hippocampus were higher in the FIV+/insulin-treated group compared with the FIV+/PBS-treated group. Moreover, intranasal insulin treatment improved neurobehavioral performance, including both memory and motor functions, in FIV+ animals. Therefore, insulin exerted ex vivo and in vivo antiviral, anti-inflammatory, and neuroprotective effects in models of HAND, representing a new therapeutic option for patients with inflammatory or infectious neurodegenerative disorders including HAND. SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HAND) represent a spectrum disorder of neurocognitive dysfunctions resulting from HIV-1 infection. Although the exact mechanisms causing HAND are unknown, productive HIV-1 infection in the brain with associated neuroinflammation is a potential pathogenic mechanism resulting in neuronal damage and death. We report that, in HIV-infected microglia cultures, insulin treatment led to reduced viral replication and inflammatory gene expression. In addition, intranasal insulin treatment of experimentally feline immunodeficiency virus-infected animals resulted in improved motor and memory performances. We show that insulin restored expression of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which is suppressed by HIV-1 replication. Our findings indicate a unique function for insulin in improving neurological outcomes in lentiviral infections, implicating insulin as a therapeutic intervention for HAND.
Journal of Virology | 2017
Shangmei Hou; Anil Kumar; Zaikun Xu; Adriana M. Airo; Iryna Stryapunina; Cheung Pang Wong; William Branton; Egor Tchesnokov; Matthias Götte; Christopher Power; Tom C. Hobman
ABSTRACT Zika virus (ZIKV), a member of the Flaviviridae family, has recently emerged as an important human pathogen with increasing economic and health impact worldwide. Because of its teratogenic nature and association with the serious neurological condition Guillain-Barré syndrome, a tremendous amount of effort has focused on understanding ZIKV pathogenesis. To gain further insights into ZIKV interaction with host cells, we investigated how this pathogen affects stress response pathways. While ZIKV infection induces stress signaling that leads to phosphorylation of eIF2α and cellular translational arrest, stress granule (SG) formation was inhibited. Further analysis revealed that the viral proteins NS3 and NS4A are linked to translational repression, whereas expression of the capsid protein, NS3/NS2B-3, and NS4A interfered with SG formation. Some, but not all, flavivirus capsid proteins also blocked SG assembly, indicating differential interactions between flaviviruses and SG biogenesis pathways. Depletion of the SG components G3BP1, TIAR, and Caprin-1, but not TIA-1, reduced ZIKV replication. Both G3BP1 and Caprin-1 formed complexes with capsid, whereas viral genomic RNA stably interacted with G3BP1 during ZIKV infection. Taken together, these results are consistent with a scenario in which ZIKV uses multiple viral components to hijack key SG proteins to benefit viral replication. IMPORTANCE There is a pressing need to understand ZIKV pathogenesis in order to advance the development of vaccines and therapeutics. The cellular stress response constitutes one of the first lines of defense against viral infection; therefore, understanding how ZIKV evades this antiviral system will provide key insights into ZIKV biology and potentially pathogenesis. Here, we show that ZIKV induces the stress response through activation of the UPR (unfolded protein response) and PKR (protein kinase R), leading to host translational arrest, a process likely mediated by the viral proteins NS3 and NS4A. Despite the activation of translational shutoff, formation of SG is strongly inhibited by the virus. Specifically, ZIKV hijacks the core SG proteins G3BP1, TIAR, and Caprin-1 to facilitate viral replication, resulting in impaired SG assembly. This process is potentially facilitated by the interactions of the viral RNA with G3BP1 as well as the viral capsid protein with G3BP1 and Caprin-1. Interestingly, expression of capsid proteins from several other flaviviruses also inhibited SG formation. Taken together, the present study provides novel insights into how ZIKV modulates cellular stress response pathways during replication.