William C. Burhans
Roswell Park Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William C. Burhans.
Free Radical Biology and Medicine | 2009
William C. Burhans; Nicholas H. Heintz
Reactive oxygen species (ROS) regulate the strength and duration of signaling through redox-dependent signal transduction pathways via the cyclic oxidation/reduction of cysteine residues in kinases, phosphatases, and other regulatory factors. Signaling circuits may be segregated in organelles or other subcellular domains with distinct redox states, permitting them to respond independently to changes in the oxidation state of two major thiol reductants, glutathione and thioredoxin. Studies in yeast, and in complex eukaryotes, show that oscillations in oxygen consumption, energy metabolism, and redox state are intimately integrated with cell cycle progression. Because signaling pathways play specific roles in different phases of the cell cycle and the hierarchy of redox-dependent regulatory checkpoints changes during cell cycle progression, the effects of ROS on cell fate vary during the cell cycle. In G1, ROS stimulate mitogenic pathways that control the activity of cyclin-dependent kinases (CDKs) and phosphorylation of the retinoblastoma protein (pRB), thereby regulating S-phase entry. In response to oxidative stress, Nrf2 and Foxo3a promote cell survival by inducing the expression of antioxidant enzymes and factors involved in cell cycle withdrawal, such as the cyclin-dependent kinase inhibitor (CKI) p27. In S phase, ROS induce S-phase arrest via PP2A-dependent dephosphorylation of pRB. In precancerous cells, unconstrained mitogenic signaling by activated oncogenes induces replication stress in S phase, which activates the DNA-damage response and induces cell senescence. A number of studies suggest that interactions of ROS with the G1 CDK/CKI network play a fundamental role in senescence, which is considered a barrier to tumorigenesis. Adaptive responses and loss of checkpoint proteins such as p53 and p16(INK4a) allow tumor cells to tolerate constitutive mitogenic signaling and enhanced production of ROS, leading to altered redox status in many fully transformed cells. Alterations in oxidant and energy metabolism of cancer cells have emerged as fertile ground for new therapeutic targets. The present challenge is to identify redox-dependent targets relevant to each cell cycle phase, to understand how these targets control fate decisions, and to describe the mechanisms that link metabolism to cell cycle progression.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ana Mesquita; Martin Weinberger; Alexandra Silva; Belém Sampaio-Marques; B. G. Almeida; Cecília Leão; Vitor Santos Costa; Fernando Rodrigues; William C. Burhans; Paula Ludovico
The free radical theory of aging posits oxidative damage to macromolecules as a primary determinant of lifespan. Recent studies challenge this theory by demonstrating that in some cases, longevity is enhanced by inactivation of oxidative stress defenses or is correlated with increased, rather than decreased reactive oxygen species and oxidative damage. Here we show that, in Saccharomyces cerevisiae, caloric restriction or inactivation of catalases extends chronological lifespan by inducing elevated levels of the reactive oxygen species hydrogen peroxide, which activate superoxide dismutases that inhibit the accumulation of superoxide anions. Increased hydrogen peroxide in catalase-deficient cells extends chronological lifespan despite parallel increases in oxidative damage. These findings establish a role for hormesis effects of hydrogen peroxide in promoting longevity that have broad implications for understanding aging and age-related diseases.
Nucleic Acids Research | 2007
William C. Burhans; Martin Weinberger
Genome instability is a fundamentally important component of aging in all eukaryotes. How age-related genome instability occurs remains unclear. The free radical theory of aging posits oxidative damage to DNA and other cellular constituents as a primary determinant of aging. More recent versions of this theory predict that mitochondria are a major source of reactive oxygen species (ROS) that cause oxidative damage. Although substantial support for the free radical theory exists, the results of some tests of this theory have been contradictory or inconclusive. Enhanced growth signaling also has been implicated in aging. Many efforts to understand the effects of growth signaling on aging have focused on inhibition of oxidative stress responses that impact oxidative damage. However, recent experiments in the model organism Saccharomyces cerevisiae (budding yeast) and in higher eukaryotes suggest that growth signaling also impacts aging and/or age-related diseases—including cancer and neurodegeneration—by inducing DNA replication stress, which causes DNA damage. Replication stress, which has not been broadly considered as a factor in aging, may be enhanced by ROS that signal growth. In this article, we review evidence that points to DNA replication stress and replication stress-induced genome instability as important factors in aging.
The EMBO Journal | 1991
William C. Burhans; L T Vassilev; J Wu; José M. Sogo; F S Nallaseth; Melvin L. DePamphilis
In the presence of emetine, an inhibitor of protein synthesis, nascent DNA on forward arms of replication forks in hamster cell lines containing either single or amplified copies of the DHFR gene region was enriched 5‐ to 7‐fold over nascent DNA on retrograde arms. This forward arm bias was observed on both sides of the specific origin of bidirectional DNA replication located 17 kb downstream of the hamster DHFR gene (OBR‐1), consistent with at least 85% of replication forks within this region emanating from OBR‐1. However, the replication fork asymmetry induced by emetine does not result from conservative nucleosome segregation, as previously believed, but from preferentially inhibiting Okazaki fragment synthesis on retrograde arms of forks to produce ‘imbalanced DNA synthesis’. Three lines of evidence support this conclusion. First, the bias existed in long nascent DNA strands prior to nuclease digestion of non‐nucleosomal DNA. Second, the fraction of RNA‐primed Okazaki fragments was rapidly diminished. Third, electron microscopic analysis of SV40 DNA replicating in the presence of emetine revealed forks with single‐stranded DNA on one arm, and nucleosomes randomly distributed to both arms. Thus, as with cycloheximide, nucleosome segregation in the presence of emetine was distributive.
PLOS ONE | 2007
Martin Weinberger; Li-Li Feng; Anita Paul; Daniel L. Smith; Robert D. Hontz; Jeffrey S. Smith; Marija Vujcic; Keshav K. Singh; Joel A. Huberman; William C. Burhans
The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted cells establish or maintain a cell cycle arrest in G1. Proteins required for efficient G1 arrest and longevity when nutrients are limiting include the DNA replication stress response proteins Mec1 and Rad53. Ectopic expression of CLN3 encoding a G1 cyclin downregulated during nutrient depletion increases the frequency with which nutrient depleted cells arrest growth in S phase instead of G1. Ectopic expression of CLN3 also shortens chronological lifespan in concert with age-dependent increases in genome instability and apoptosis. These findings indicate that replication stress is an important determinant of chronological lifespan in budding yeast. Protection from replication stress by growth-inhibitory effects of caloric restriction, osmotic and other stresses may contribute to hormesis effects on lifespan. Replication stress also likely impacts the longevity of higher eukaryotes, including humans.
Journal of Cell Science | 2005
Martin Weinberger; Li Feng; Karuna Sharma; Xiaolei Sun; Maria A. Marchetti; Joel A. Huberman; William C. Burhans
Apoptosis in metazoans is often accompanied by the destruction of DNA replication initiation proteins, inactivation of checkpoints and activation of cyclin-dependent kinases, which are inhibited by checkpoints that directly or indirectly require initiation proteins. Here we show that, in the budding yeast Saccharomyces cerevisiae, mutations in initiation proteins that attenuate both the initiation of DNA replication and checkpoints also induce features of apoptosis similar to those observed in metazoans. The apoptosis-like phenotype of initiation mutants includes the production of reactive oxygen species (ROS) and activation of the budding-yeast metacaspase Yca1p. In contrast to a recent report that activation of Yca1p only occurs in lysed cells and does not contribute to cell death, we found that, in at least one initiation mutant, Yca1p activation occurs at an early stage of cell death (before cell lysis) and contributes to the lethal effects of the mutation harbored by this strain. Apoptosis in initiation mutants is probably caused by DNA damage associated with the combined effects of insufficient DNA replication forks to completely replicate the genome and defective checkpoints that depend on initiation proteins and/or replication forks to restrain subsequent cell-cycle events until DNA replication is complete. A similar mechanism might underlie the proapoptotic effects associated with the destruction of initiation and checkpoint proteins during apoptosis in mammals, as well as genome instability in initiation mutants of budding yeast.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Maria A. Marchetti; Sanjay Kumar; Edgar Hartsuiker; Mohamed Maftahi; Antony M. Carr; Greg A. Freyer; William C. Burhans; Joel A. Huberman
The eukaryotic intra-S-phase checkpoint, which slows DNA synthesis in response to DNA damage, is poorly understood. Is DNA damage recognized directly, or indirectly through its effects on replication forks? Is the slowing of S phase in part because of competition between DNA synthesis and recombination/repair processes? The results of our genetic analyses of the intra-S-phase checkpoint in the fission yeast, Schizosaccharomyces pombe, suggest that the slowing of S phase depends weakly on the helicases Rqh1 and Srs2 but not on other recombination/repair pathways. The slowing of S phase depends strongly on the six checkpoint-Rad proteins, on Cds1, and on Rad4/Cut5 (similar to budding yeast Dpb11, which interacts with DNA polymerase ɛ) but not on Rhp9 (similar to budding yeast Rad9, necessary for direct damage recognition). These results suggest that, in fission yeast, the signal activating the intra-S-phase checkpoint is generated only when replication forks encounter DNA damage.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mark Rinnerthaler; Sabrina Büttner; Peter Laun; Gino Heeren; Thomas K. Felder; Harald Klinger; Martin Weinberger; Klaus Stolze; Tomas Grousl; Jiri Hasek; Oldrich Benada; Ivana Frydlova; Andrea Klocker; Birgit Simon-Nobbe; Bettina Jansko; Hannelore Breitenbach-Koller; Tobias Eisenberg; Campbell W. Gourlay; Frank Madeo; William C. Burhans; Michael Breitenbach
The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Patrick H. Maxwell; William C. Burhans; M. Joan Curcio
Genetic damage through mutations and genome rearrangements has been hypothesized to contribute to aging. The specific mechanisms responsible for age-induced increases in mutation and chromosome rearrangement frequencies and a potential causative role for DNA damage in aging are under active investigation. Retrotransposons are mobile genetic elements that cause insertion mutations and contribute to genome rearrangements through nonallelic recombination events in humans and other organisms. We have investigated the role of endogenous Ty1 retrotransposons in aging-associated increases in genome instability using the Saccharomyces cerevisiae chronological aging model. We show that age-induced increases in loss of heterozygosity and chromosome loss events are consistently diminished by mutations or treatments that reduce Ty1 retrotransposition. Ty1 mobility is elevated in very old yeast populations, and new retromobility events are often associated with chromosome rearrangements. These results reveal a correlation between retrotransposition and genome instability during yeast aging. Retrotransposition may contribute to genetic damage during aging in diverse organisms and provides a useful tool for studying whether genetic damage is a causative factor for aging.
Journal of Cell Biology | 2008
Federica Madia; Cristina Gattazzo; Min Wei; Paola Fabrizio; William C. Burhans; Martin Weinberger; Abdoulaye Galbani; Jesse R. Smith; Christopher Nguyen; Selina Huey; Lucio Comai; Valter D. Longo
Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals.