Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William C. Griffin is active.

Publication


Featured researches published by William C. Griffin.


Neuron | 2004

Homer Proteins Regulate Sensitivity to Cocaine

Karen K. Szumlinski; Marlin H. Dehoff; Shin H. Kang; Kelly A. Frys; Kevin D. Lominac; Matthias Klugmann; Jason Rohrer; William C. Griffin; Shigenobu Toda; Nicolas P. Champtiaux; Thomas L. Berry; Jian C. Tu; Stephanie E. Shealy; Matthew J. During; Lawrence D. Middaugh; Paul F. Worley; Peter W. Kalivas

Drug addiction involves complex interactions between pharmacology and learning in genetically susceptible individuals. Members of the Homer gene family are regulated by acute and chronic cocaine administration. Here, we report that deletion of Homer1 or Homer2 in mice caused the same increase in sensitivity to cocaine-induced locomotion, conditioned reward, and augmented extracellular glutamate in nucleus accumbens as that elicited by withdrawal from repeated cocaine administration. Moreover, adeno-associated virus-mediated restoration of Homer2 in the accumbens of Homer2 KO mice reversed the cocaine-sensitized phenotype. Further analysis of Homer2 KO mice revealed extensive additional behavioral and neurochemical similarities to cocaine-sensitized animals, including accelerated acquisition of cocaine self-administration and altered regulation of glutamate by metabotropic glutamate receptors and cystine/glutamate exchange. These data show that Homer deletion mimics the behavioral and neurochemical phenotype produced by repeated cocaine administration and implicate Homer in regulating addiction to cocaine.


Neuropsychopharmacology | 2009

Ethanol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Ventral Tegmental Area

Cheng Xiao; Xuesi M. Shao; M. Foster Olive; William C. Griffin; Ke Yong Li; K. Krnjević; Chunyi Zhou; Jiang Hong Ye

The cellular mechanisms underlying alcohol addiction are poorly understood. In several brain areas, ethanol depresses glutamatergic excitatory transmission, but how it affects excitatory synapses on dopamine neurons of the ventral tegmental area (VTA), a crucial site for the development of drug addiction, is not known. We report here that in midbrain slices from rats, clinically relevant concentrations of ethanol (10–80 mM) increase the amplitude of evoked EPSCs and reduce their paired-pulse ratio in dopamine neurons in the VTA. The EPSCs were mediated by glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. In addition, ethanol increases the frequency but not the amplitude of spontaneous EPSCs. Furthermore, ethanol increases extracellular glutamate levels in the VTA of midbrain slices. The effects of ethanol are mimicked by SKF 38393, a dopamine D1 receptor agonist, and by GBR 12935, a dopamine reuptake inhibitor, and they are blocked by SKF 83566, a D1 antagonist, or by reserpine, which depletes dopamine stores. The enhancement of sEPSC frequency reaches a peak with 40 mM ethanol and declines with concentrations ⩾80 mM ethanol, which is quite likely a result of D2 receptor activation as raclopride, a D2 receptor blocker, significantly enhanced 80 mM ethanol-induced enhancement of sEPSCs. Finally, 6, 7-dinitroquinoxaline-2, 3-dione (DNQX), an AMPA receptor antagonist, attenuates ethanol-induced excitation of VTA DA neurons. We therefore conclude that, acting via presynaptic D1 receptors, ethanol at low concentrations increases glutamate release in the VTA, thus raising somatodendritic dopamine release, which further activates the presynaptic D1 receptors. Enhancement of this positive feedback loop may significantly contribute to the development of alcohol addiction.


Alcoholism: Clinical and Experimental Research | 2009

Intensity and duration of chronic ethanol exposure is critical for subsequent escalation of voluntary ethanol drinking in mice.

William C. Griffin; Marcelo F. Lopez; Howard C. Becker

BACKGROUND Excessive alcohol drinking continues to be an important health problem. Recent studies from our laboratory and others have demonstrated that animal models of ethanol dependence and relapse can contribute to understanding factors that contribute to excessive drinking. In this study, we tested the hypothesis that the amount and duration of ethanol exposure is critical for promoting the escalation in drinking by mice given access to ethanol in a limited access paradigm. METHODS We used several methods of chronic intermittent ethanol exposure in male C57BL/6J mice that would vary in the amount and duration of exposure to ethanol as indicated by blood ethanol concentrations (BEC). After establishing baseline drinking in the mice using a 2 hours, 2 bottle choice drinking paradigm, each study involved alternating between periods of ethanol exposure and periods of limited access to ethanol (1 cycle) for a total of 3 cycles. In Study 1, mice were allowed extended access (16 hours) to ethanol for oral consumption or remained in the home cage. In Study 2, the ethanol exposure consisted of intragastric gavage of increasing doses of ethanol or isocaloric sucrose as the control. Study 3 compared intragastric gavage combined with pyrazole, an alcohol dehydrogenase inhibitor, with vapor inhalation of ethanol using procedures known to lead to increased drinking in mice. Finally, Study 4 was a retrospective review of several studies conducted in our laboratory using inhalation procedures. The retrospective review encompassed a range of postvapor chamber BEC values and ethanol intakes that would allow a relationship between increased drinking and BEC to be examined. RESULTS Allowing mice to drink for longer periods of time did not cause increased drinking in subsequent limited access sessions. Likewise, gastric intubation of ethanol which produced high BEC (>300 mg/dl) with or without pyrazole did not increase drinking. Only the vapor inhalation procedure, which was associated with sustained BEC above 175 mg/dl for the entire exposure period resulted in increased drinking. The retrospective study provided further evidence that sustained BEC levels above 175 mg/dl was critical to the escalation in drinking. CONCLUSIONS We found that the intensity (amount) and duration of ethanol exposure, indexed by BEC, is critical to produce increased drinking in mice. Specifically, BEC must regularly exceed 175 mg/dl for the escalation in drinking to occur. Future studies will examine neurobiological adaptations that may underlie the increased drinking behavior caused by chronic intermittent ethanol exposure.


Neuropsychopharmacology | 2014

Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

William C. Griffin; Harold L. Haun; Callan L Hazelbaker; Vorani S. Ramachandra; Howard C. Becker

Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that ethanol dependence produces adaptations that favor elevated glutamate activity in the NAc which, in turn, promote excessive levels of ethanol consumption associated with dependence.


Alcoholism: Clinical and Experimental Research | 2012

Repeated Cycles of Chronic Intermittent Ethanol Exposure Leads to the Development of Tolerance to Aversive Effects of Ethanol in C57BL/6J Mice

Marcelo F. Lopez; William C. Griffin; Roberto I. Melendez; Howard C. Becker

BACKGROUND Repeated cycles of chronic intermittent ethanol (CIE) exposure lead to increased voluntary ethanol (EtOH) intake in C57BL/6J mice. This study evaluates the development of tolerance to EtOHs aversive effects in CIE exposure. METHODS Adult male C57BL/6J mice were trained to drink 15% EtOH (vs. water) in a limited access procedure and then exposed to CIE (EtOH mice) or air (control [CTL] mice) for 5 cycles alternating with weekly access to EtOH drinking. Following the 4th CIE cycle, the aversive effects of EtOH were evaluated using a conditioned taste aversion (CTA) paradigm with 1% saccharin as the conditioned stimulus. Several doses of EtOH (0, 1, 2, and 3 g/kg) and LiCl (0.4 M, 0.02 ml/g) served as unconditioned stimuli. Finally, mice underwent a 5th CIE cycle to measure blood and brain concentrations following a 2 g/kg EtOH dose. RESULTS CIE exposure increased EtOH drinking in EtOH mice while drinking in CTL mice remained stable. The lowest EtOH dose (1 g/kg) did not induce CTA in either group, but the highest dose (3 g/kg) produced CTA in both groups (49% reduction for CTL vs. 25% reduction for EtOH) although the group differences were not statistically significant. However, the 2 g/kg EtOH dose induced a significant aversion in CTL mice (27% reduction) but not in EtOH mice (20% increase), indicating tolerance to EtOHs aversive effects. LiCl caused a similar aversion in CTL and EtOH mice (50% reduction). Finally, blood and brain ethanol concentrations were not different between CTL and EtOH mice following a 2 g/kg EtOH dose. CONCLUSIONS The data indicate that CIE exposure produces tolerance to the aversive effects of 2 g/kg EtOH. This effect does not appear to be related to a learning deficit or altered EtOH pharmacokinetics. These data support the notion that tolerance to EtOHs aversive effects may contribute to excessive EtOH drinking in EtOH-dependent mice.


Experimental Neurology | 2007

Highly active antiretroviral therapy of cognitive dysfunction and neuronal abnormalities in SCID mice with HIV encephalitis.

Jennifer Cook-Easterwood; Lawrence D. Middaugh; William C. Griffin; Irfan Khan; William R. Tyor

Our objective was to determine if highly active antiretroviral therapy (HAART), previously shown to ameliorate several pathological features of HIV encephalitis (HIVE) in a SCID mouse model, would also reduce additional established pathological features of HIV: cognitive dysfunction, TNF-alpha, production, and reduced MAP-2 expression. SCID mice with HIVE and control mice inoculated with uninfected monocytes were administered HAART or saline. The HIV pathological features evaluated included astrogliosis, viral load, neuronal apoptosis, MAP-2 expression, mouse TNF-alpha mRNA production and learning acquisition and retention. HAART reduced the HIV-induced viral load, and the astro- and microgliosis as previously observed; this effect was extended to HIV-induced increases in TNF-alpha mRNA production. In contrast, although HIV produced the cognitive deficits previously observed and also decreased MAP-2 expression in the area surrounding the injected HIV-infected human monocytes, HAART did not attenuate these effects. Interestingly, there was no neuronal apoptosis evident at the time point reflecting the above pathology. The results of this study combined with previous reports indicate that HAART reduces TNF-alpha mRNA, viral load and astrogliosis; however, HAART does not improve HIV-induced cognitive dysfunction or MAP-2 decreases. These results suggest that viral load, astrogliosis, TNF- alpha and apoptosis are not prominent in the pathogenesis of early functional deficits related to decreased MAP-2 expression or cognitive dysfunction in HIVE in SCID mice.


Alcohol | 2011

Changes in extracellular levels of glutamate in the nucleus accumbens after ethanol-induced behavioral sensitization in adolescent and adult mice

Priscila Fernandes Carrara-Nascimento; William C. Griffin; Daniel Mazzeo Pastrello; M. Foster Olive; Rosana Camarini

Repeated administration of low doses of ethanol gradually increases locomotor responses to ethanol in adult Swiss mice. This phenomenon is known as behavioral sensitization. However, we have shown that adolescent Swiss mice show either behavioral tolerance or no sensitization after repeated ethanol injections. Although the mesolimbic dopamine system has been extensively implicated in behavioral sensitization, several studies have demonstrated an important role of glutamatergic transmission in this phenomenon. In addition, relatively few studies have examined the role of developmental factors in behavioral sensitization to ethanol. To examine the relationship between age differences in behavioral sensitization to ethanol and the neurochemical adaptations related to glutamate within nucleus accumbens (NAc), in vivo microdialysis was conducted in adolescent and adult Swiss mice treated with ethanol (1.8 g/kg) or saline for 15 days and subsequently challenged with an acute dose (1.8 g/kg) of ethanol 6 days later. Consistent with previous findings, only adult mice demonstrated evidence of behavioral sensitization. However, ethanol-treated adolescent mice demonstrated a 196.1 ± 40.0% peak increase in extracellular levels of glutamate in the NAc after ethanol challenge in comparison with the basal values, whereas ethanol-treated adult mice demonstrated a 52.2 ± 6.2% reduction in extracellular levels of glutamate in the NAc after ethanol challenge. These observations suggest an age-dependent inverse relationship between behavioral and glutamatergic responses to repeated ethanol exposure.


Brain Research | 2008

Effects of adolescent exposure to cocaine on locomotor activity and extracellular dopamine and glutamate levels in nucleus accumbens of DBA/2J mice

Rosana Camarini; William C. Griffin; Amy B. Yanke; Benvinda Rosalina dos Santos; M. Foster Olive

Adolescents differ from adults in their acute sensitivity to several drugs of abuse, but little is known about the long-term neurobehavioral effects of adolescent drug exposure. To explore this further, we evaluated the locomotor responses to repeated cocaine administration in adolescent and adult male DBA/2J mice and alterations in extracellular levels of dopamine (DA) and glutamate (GLU) in the nucleus accumbens (NAc) in response to a subsequent cocaine challenge. Adolescent and adult mice were treated daily with saline or cocaine (10 mg/kg, i.p) for 9 consecutive days. Ten days following the last injection, animals were implanted with microdialysis probes and 24 h later microdialysis samples were collected before and after an acute cocaine challenge. Adolescents but not adults demonstrated development of behavioral sensitization to cocaine. Microdialysis procedures revealed that cocaine-treated mice displayed greater peak increases in extracellular DA in response to a subsequent cocaine challenge as compared to saline-treated mice, in contrast with lower peak increases in extracellular GLU. While adults exhibited greater peaks in extracellular DA in response to cocaine than adolescents did, adolescent mice presented a more rapid onset of peak extracellular DA levels than adults. Our results indicate differences in the behavioral and neurochemical responses to cocaine in adolescent versus adult mice, which may be relevant to the increased risk of developing addiction in humans who are exposed to drugs of abuse during adolescence.


Journal of NeuroVirology | 2004

The severe combined immunodeficient (SCID) mouse model of human immunodeficiency virus encephalitis: Deficits in cognitive function

William C. Griffin; Lawrence D. Middaugh; Jennifer E. Cook; William R. Tyor

The severe combined immunodeficient (SCID) mouse model of human immunodeficiency virus (HIV) encephalitis exhibits many of the histopathological and pathophysiological features of human HIV-associated dementia (HAD). Although deficits that may resemble HAD in humans have been reported for HIV-infected SCID mice, the cognitive deficit aspect of the model has very limited empirical support. Here, the authors report that HIV-infected SCID mice display cognitive deficits on a task requiring the animal to learn and remember the spatial relationship of cues in its environment in order to locate a submerged platform in a Morris water maze. The cognitive deficits manifest as longer latencies to locate the platform on the last day of the maze acquisition period and during a retention test 8 days later. Control experiments indicated that the poor performance by HIV-infected mice in comparison to controls was not due to impaired motor function or swimming ability, impaired visual acuity, or increased susceptibility to fatigue. Thus, the increased times required for HIV-infected mice to locate the submerged platform during the acquisition and memory tests likely reflect a cognitive deficit, rather than sensorimotor or emotional abnormalities. These behavioral deficits are associated with significant increases in astrogliosis and microgliosis in the HIV-infected mice. The results of this study strengthen the SCID mouse model of HIV encephalitis by definitively establishing cognitive deficits for the model in addition to its previously reported neuropathological features.


Alcohol | 2014

Alcohol Dependence and Free-Choice Drinking in Mice

William C. Griffin

Alcohol dependence continues to be an important health concern and animal models are critical to furthering our understanding of this complex disease. A hallmark feature of alcoholism is a significant increase in alcohol drinking over time. While several different animal models of excessive alcohol (ethanol) drinking exist for mice and rats, a growing number of laboratories are using a model that combines chronic ethanol exposure procedures with voluntary ethanol drinking with mice as experimental subjects. Primarily, these studies use a chronic intermittent ethanol (CIE) exposure pattern to render mice dependent and a 2-h limited access procedure to evaluate drinking behavior. Compared to non-dependent mice that also drink ethanol, the ethanol-dependent mice demonstrate significant increases in voluntary ethanol drinking. The increased drinking significantly elevates blood and brain ethanol concentrations compared to the non-dependent control mice. Studies report that the increased drinking by dependent mice is driven by neuroadaptations in glutamatergic and corticotropin-releasing factor signaling in different brain regions known to be involved in alcohol-related behaviors. The dysregulation of these systems parallels findings in human alcoholics and treatments that demonstrate efficacy in alcoholics can also reduce drinking in this model. Moreover, preclinical findings have informed the development of human clinical trials, further highlighting the translational potential of the model. As a result of these features, the CIE exposure and free-choice drinking model is becoming more widely used and promises to provide more insight into mechanisms of excessive drinking that may be important for developing treatments for human alcoholics. The salient features and possible future considerations for CIE exposure and free-choice drinking in mice are discussed.

Collaboration


Dive into the William C. Griffin's collaboration.

Top Co-Authors

Avatar

Howard C. Becker

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lawrence D. Middaugh

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Marcelo F. Lopez

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kennerly S. Patrick

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Mulholland

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Guinevere H. Bell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Harold L. Haun

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

M. Foster Olive

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Natalie S. McGuier

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Peter W. Kalivas

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge