Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William C. Hockaday is active.

Publication


Featured researches published by William C. Hockaday.


Global Biogeochemical Cycles | 2007

Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

Karen Hammes; Michael W. I. Schmidt; Ronald J. Smernik; Lloyd A. Currie; William P. Ball; Thanh H. Nguyen; Patrick Louchouarn; Stephane Houel; Örjan Gustafsson; Marie Elmquist; Gerard Cornelissen; J. O. Skjemstad; Caroline A. Masiello; Jianzhong Song; Ping’an Peng; Siddhartha Mitra; Joshua C. Dunn; Patrick G. Hatcher; William C. Hockaday; D. M. Smith; Christoph Hartkopf-Fröder; Axel Böhmer; Burkhard Lüer; Barry J. Huebert; Wulf Amelung; Sonja Brodowski; Lin Huang; Wendy Zhang; Philip M. Gschwend; D. Xanat Flores-Cervantes

Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here.


Environmental Science & Technology | 2010

Temperature Sensitivity of Black Carbon Decomposition and Oxidation

Binh Thanh Nguyen; Johannes Lehmann; William C. Hockaday; Stephen Joseph; Caroline A. Masiello

Global warming accelerates decomposition of soil organic carbon (SOC) pools with varying rates and temperature sensitivities. Black carbon (BC) materials are among the slowest decomposing components of the SOC pool. Although BC is a large component of SOC in many systems, the influence of temperature on decomposition of BC bearing different chemical and physical structures remains poorly understood. Four BC materials, produced by carbonizing corn residue and oak wood at 350 and 600 degrees C (corn-350-BC, corn-600-BC, oak-350-BC, and oak-600-BC), were mixed with pure sand and incubated at 4, 10, 20, 30, 45, and 60 degrees C for 1 year. Corn-BC was more porous than oak-BC as determined by scanning electron microscopy (SEM). Increasing the charring temperature from 350 to 600 degrees C led to greater aromaticity with 5-15% more C in aromatic rings and a 39-57% increase in both nonprotonated aromatic C and aromatic bridgehead C quantified by nuclear magnetic resonance (NMR) spectroscopy and a greater degree of order and development of C layers as observed by transmission electron microscopy (TEM). With a temperature increase from 4 to 60 degrees C, C loss of corn-350-BC increased from 10 to 20%, corn-600-BC, from 4 to 20%, oak-350-BC, from 2.3 to 15%, and oak-600-BC from 1.5 to 14% of initial C content, respectively. Temperature sensitivity (Q(10)) decreased with increasing incubation temperature and was highest in oak-600-BC, followed by oak-350-BC, corn-600-BC, and corn-350-BC, indicating that decomposition of more stable BC was more sensitive to increased temperature than less stable materials. Carbon loss and potential cation exchange capacity (CECp) significantly (p < 0.05) correlated with O/C ratios and change in O/C ratios, suggesting that oxidative processes were the most important mechanism controlling BC decomposition in this study.


Journal of Geophysical Research | 2009

Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

William C. Hockaday; Caroline A. Masiello; James T. Randerson; Ronald J. Smernik; Jeffrey A. Baldock; Oliver A. Chadwick; Jennifer W. Harden

most accurate technique, direct polarization solid-state 13 C NMR with the molecular mixing model, agrees with elemental analyses to ±0.036 Cox units (±0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of � 0.26 and a range from � 0.45 to 0.30, corresponding to OR values of 1.08 ± 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated with the fire had an OR of 1.091 (±0.003). Fire appears to be a major factor driving the soil C pool to higher oxidation states and lower OR values. Episodic fluxes caused by disturbances like fire may have substantially different ORs from ecosystem respiration fluxes and therefore should be better quantified to reduce uncertainties associated with our understanding of the global atmospheric carbon budget.


Journal of Geophysical Research | 2012

Dynamics of decadally cycling carbon in subsurface soils

Jun Koarashi; William C. Hockaday; Caroline A. Masiello; Susan E. Trumbore

Subsurface horizons contain more than half of the global soil carbon (C), yet the dynamics of this C remains poorly understood. We estimated the amount of decadally cycling subsurface C (∼20 to 60 cm depth) from the incorporation of ‘bomb’ radiocarbon (14C) using samples taken over 50 years from grassland and forest soils in the Sierra Nevada Mountains, California. The radiocarbon content of all organic matter fractions (roots, low-density (LF), high-density (HF), and non-oxidizable HF) increased from the pre- to post-bomb samples, indicating ∼1–6 kgC m−2, or about half of the subsoil C, consists of C fixed since 1963. Low-density (LF-C) represented 20 years) for the arrival of ‘bomb’14C to this fraction. A two-pool (fast-cycling and passive) model including >20 year time lag showed that 28–73% of the subsoil mineral-associated C had turnover times of 10–95 years. Microbially respired C was enriched in bomb14C compared to both LF and HF fractions in 2009. Overall, we estimate that C fluxes through decadally cycling pools in the subsurface are equivalent to 1–9% (grassland) to 10–54% (forest) of the surface litterfall at these sites. Our results demonstrate the importance of decadally cycling C for ecosystem C balance, and that a lagged response of the large subsurface C stores to changes in environmental conditions is possible.


Journal of Geophysical Research | 2015

Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

Jessica R. Miesel; William C. Hockaday; Randall K. Kolka; Philip A. Townsend

Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0–10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1–2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.


Environmental Science & Technology | 2011

Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.

Morgan E. Gallagher; William C. Hockaday; Caroline A. Masiello; Sieglinde S. Snapp; Claire Patricia McSwiney; Jeffrey A. Baldock

Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystems N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity.


Chemosphere | 2008

Effects of long-term soil amendment with sewage sludges on soil humic acid thermal and molecular properties

José M. García Fernández; William C. Hockaday; César Plaza; Alfredo Polo; Patrick G. Hatcher

Sewage sludges are frequently used as soil amendments due to their high contents of organic matter and nutrients, particularly N and P. However, their effects upon the chemistry of soil humic acids, one of the main components of the soil organic matter, need to be more deeply studied in order to understand the relation between organic matter structure and beneficial soil properties. Two sewage sludges subjected to different types of pre-treatment (composted and thermally dried) with very different chemical compositions were applied for three consecutive years to an agricultural soil under long-term field study. Thermal analysis (TG-DTG-DTA) and solid-state (13)C NMR spectroscopy were used to compare molecular and structural properties of humic acids isolated from sewage sludges, and to determine changes in amended soils. Thermally dried sewage sludge humic acids showed an important presence of alkyl and O/N-alkyl compounds (70%) while composted sludge humic acids comprised 50% aromatic and carbonyl carbon. In spite of important differences in the initial chemical and thermal properties of the two types of sewage sludges, the chemical and thermal properties of the soil humic acids were quite similar to one another after 3 years of amendment. Long-term application of both sewage sludges resulted in 80-90% enrichment in alkyl carbon and organic nitrogen contents of the soil humic acid fraction.


Environmental Science & Technology | 2013

Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

Maximilian P.W. Schneider; Lacey A. Pyle; Kenneth L. Clark; William C. Hockaday; Caroline A. Masiello; Michael W. I. Schmidt

The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn.


Journal of Geophysical Research | 2015

Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

William C. Hockaday; Morgan E. Gallagher; Caroline A. Masiello; Jeffrey A. Baldock; Colleen M. Iversen; Richard J. Norby

The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.


Journal of Geophysical Research | 2014

Changes in fire‐derived soil black carbon storage in a subhumid woodland

Jian Yao; William C. Hockaday; Darrel B. Murray; Joseph D. White

Fire-derived black carbon (BC) in soil, including charcoal, represents an important part in terrestrial carbon cycling due to its assumed long persistence in soil. Soil BC concentrations for a woodland in central Texas, USA, was found from study plots with a fire scar dendrochronology spanning 100 years. BC values were initially determined from 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR-based BC concentrations were used to calibrate midinfrared vibrational spectra (MIRS) for evaluation as a less expensive and expedient technique. However, unexpectedly high BC values from the MIRS method were found for sites without evidence of fire for the past 100 years. Estimation of BC from NMR technique showed mean BC concentration of 2.73 ± 3.06 g BC kg−1 (0.91 ± 0.51 kg BC m−2) for sites with fire occurrence within the last 40 years compared with BC values of 1.21 ± 1.70 g BC kg−1 soil (0.18 ± 0.14 kg BC m−2) for sites with fire 40–100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg−1 (0.02 ± 0.03 kg BC m−2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alkyl C) showed no differences across the sites, indicating low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. These results suggest that the addition of BC may be limited by topography and timing of fire.

Collaboration


Dive into the William C. Hockaday's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Baldock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge