Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William C. Priedhorsky is active.

Publication


Featured researches published by William C. Priedhorsky.


Astronomy and Astrophysics | 2001

The XMM-Newton optical/UV monitor telescope

K. O. Mason; Alice A. Breeveld; R. Much; M. Carter; F. A. Cordova; Mark Cropper; J. Fordham; H. Huckle; Cheng Ho; H. Kawakami; J. Kennea; Tom E. Kennedy; J. P. D. Mittaz; D. Pandel; William C. Priedhorsky; Timothy P. Sasseen; R. Shirey; P. Smith; Jean-Marie Vreux

The XMM-OM instrument extends the spec- tral coverage of the XMM-Newton observatory into the ul- traviolet and optical range. It provides imaging and time- resolved data on targets simultaneously with observations in the EPIC and RGS. It also has the ability to track stars in its field of view, thus providing an improved post- facto aspect solution for the spacecraft. An overview of the XMM-OM and its operation is given, together with cur- rent information on the performance of the instrument.


Nature | 1999

Observation of contemporaneous optical radiation from a gamma-ray burst

C. Akerlof; Richard Joseph Balsano; S. D. Barthelmy; Joshua J. Bloch; P. Butterworth; D. Casperson; T. L. Cline; Sandra J. Fletcher; F. Frontera; Galen R. Gisler; John Heise; Jack G. Hills; Robert L. Kehoe; Brian J. Lee; S. L. Marshall; Timothy A. McKay; R. S. Miller; Luigi Piro; William C. Priedhorsky; John J. Szymanski; J. Wren

The origin of γ-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates, for the bursts allowed the detection of faint optical and radio afterglows — optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, z ≈ 1.6 (refs 8, 9), implies a peak optical luminosity of 5× 1049 erg s−1. Optical emission from γ-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the γ-rays might also be produced. The lack of a significant change in the γ-ray light curve when the optical emission develops suggests that the γ-rays are not produced at the shock front, but closer to the site of the original explosion.


Nature | 2003

Surveillance: Radiographic imaging with cosmic-ray muons

Konstantin N. Borozdin; Gary E. Hogan; C. L. Morris; William C. Priedhorsky; A. Saunders; Larry J. Schultz; Margaret E. Teasdale

Despite its enormous success, X-ray radiography has its limitations: an inability to penetrate dense objects, the need for multiple projections to resolve three-dimensional structure, and health risks from radiation. Here we show that natural background muons, which are generated by cosmic rays and are highly penetrating, can be used for radiographic imaging of medium-to-large, dense objects, without these limitations and with a reasonably short exposure time. This inexpensive and harmless technique may offer a useful alternative for detecting dense materials — for example, a block of uranium concealed inside a truck full of sheep.


The Astrophysical Journal | 2004

Relativistic O VIII Emission and Ionized Outflow in NGC 4051 Measured with XMM-Newton

P. Ogle; K. O. Mason; M. J. Page; N. J. Salvi; F. A. Cordova; I. M. McHardy; William C. Priedhorsky

We present XMM-Newton Reflection Grating Spectrometer observations of the soft X-ray spectrum of NGC 4051 and explore their implications for the inner accretion disk and ionized outflow in the active galactic nucleus. We fit the soft X-ray excess with a relativistically broadened O VIII recombination spectrum, including the entire line series and recombination continuum. This plus an underlying power-law continuum provides a much better fit to the soft X-ray spectrum than a single temperature or disk blackbody plus power law. The emission-line profiles, computed for a Kerr metric around a maximally rotating black hole, reveal a sharply peaked disk emissivity law and inner radius smaller than 1.7RG. The spectrum also includes narrow absorption and emission lines from C, N, O, Ne, and Fe in an ionized outflow. Outflow column densities are relatively low and do not create significant edges in the spectrum. The small amount of absorption bolsters confidence in the detection of relativistic emission-line features. The narrow-line emitter has a large (76%) global covering fraction, leading to strong forbidden lines and filling in of the resonance absorption lines. We also find broad C VI Lyα and very broad O VII emission from the broad-line region. The narrow- and broad-line regions span large ranges in ionization parameter and may arise in a disk outflow. The ionized absorber has a large ionization range, which is inconsistent with pressure equilibrium in a multiphase medium. The mass outflow rate exceeds the accretion rate by a factor of 1000.


Science & Global Security | 2008

Tomographic Imaging with Cosmic Ray Muons

C. L. Morris; C. C. Alexander; Jeffrey Bacon; Konstantin N. Borozdin; D. J. Clark; R. Chartrand; C. J. Espinoza; Andrew M. Fraser; M. Galassi; J. A. Green; J. S. Gonzales; John J. Gomez; Nicolas W. Hengartner; Gary E. Hogan; Alexei V. Klimenko; M. Makela; P. McGaughey; J. Medina; F.E. Pazuchanics; William C. Priedhorsky; J. C. Ramsey; A. Saunders; R. C. Schirato; Larry J. Schultz; Michael James Sossong; G. S. Blanpied

Over 120 million vehicles enter the United States each year. Many are capable of transporting hidden nuclear weapons or nuclear material. Currently deployed X-ray radiography systems are limited because they cannot be used on occupied vehicles and the energy and dose are too low to penetrate many cargos. We present a new technique that overcomes these limitations by obtaining tomographic images using the multiple scattering of cosmic radiation as it transits each vehicle. When coupled with passive radiation detection, muon interrogation could contribute to safe and robust border protection against nuclear devices or material in occupied vehicles and containers.


Review of Scientific Instruments | 2003

Detection of high-Z objects using multiple scattering of cosmic ray muons

William C. Priedhorsky; Konstantin N. Borozdin; Gary E. Hogan; C. L. Morris; A. Saunders; Larry J. Schultz; Margaret E. Teasdale

We demonstrate that high-Z material can be detected and located in three dimensions using radiographs formed by cosmic-ray muons. Detection of high-Z material hidden inside large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons [K. N. Borozdin et al., Nature (London) 422, 277 (2003)]. Here, we show that compact, high-Z objects can be detected and located in three dimensions with muon radiography. The natural flux of cosmic-ray muons [P. K. F. Grieder, Cosmic Rays at Earth (Elsevier, New York, 2001)], approximately 10 000 m−2 min−1, can form useful images in ∼1 min, using large-area muon detectors like those used in high-energy physics.


The Astrophysical Journal | 1983

Evidence for an about 300 day period in Cygnus X-1

William C. Priedhorsky; J. Terrell; S. S. Holt

We present the time history of X-ray emission from Cyg X-1 over an 11 year period, with 10 day resolution. The data were obtained by experiments on the Vela 5B (1969--1979) and Ariel 5 (1974--1980) satellites. Cyg X-1 varies by approx.25% with a 294 +- 4 day period. This modulation is apparently unrelated to the known transitions between the source high and low states. Flux minima occur at 1974.05+nP. The observed period is within the possible range for the precession period of an accretion disk, or of the companion star HDE 226868, in the Cyg X-1 system.


The Astrophysical Journal | 2005

X-Ray Observations of the Boundary Layer in Dwarf Novae at Low Accretion Rates

D. Pandel; Keith O. Mason; William C. Priedhorsky

We present a spectral analysis of XMM-Newton data of 10 dwarf novae, 9 of which were observed during a quiescent state. The X-ray spectra indicate the presence of a hot, optically thin plasma with a temperature distribution consistent with a simple, isobaric cooling flow. The likely origin of the X-ray emission is cooling plasma in the boundary layer settling onto the white dwarf. Using a cooling flow model, we derive the temperatures, accretion rates, rotational velocities, and elemental abundances of the X-ray-emitting gas. We discuss the implications of our findings for the structure of the boundary layer. A comparison of X-ray and ultraviolet luminosities finds no evidence of underluminous boundary layers in any of the quiescent dwarf novae. The X-ray spectrum of EI UMa differs significantly from those of the other objects, showing a strong fluorescent Fe Kα line and a strong O VII line triplet. Based on the observational evidence, we argue that EI UMa is most likely an intermediate polar and not, as previously thought, a dwarf nova.


The Astrophysical Journal | 2004

M31 Globular Cluster X-Ray Sources: XMM-Newton and Chandra Results

Sergey P. Trudolyubov; William C. Priedhorsky

We present the results of an M31 globular cluster (GC) X-ray source survey, based on the data of XMM-Newton and Chandra observations covering ~6100 arcmin2 of M31. We detected 43 X-ray sources coincident with GC candidates from various optical surveys. The inferred isotropic X-ray luminosities of GC sources lie between ~1035 and ~1039 ergs s-1 in the 0.3-10 keV energy band. The spectral properties of the 31 brightest sources in our sample were found to be similar to those of the low-mass X-ray binaries (LMXBs) located in the bulge and the GCs of the Milky Way. The spectral distribution of the M31 GC X-ray sources is consistent with that derived for the bulge of M31 and other nearby galaxies of different morphological type. Several sources demonstrate a correlation between the level of X-ray flux and the hardness of their energy spectrum reminiscent of the Galactic Z and atoll sources. We found that ~80% of the M31 GC sources with multiple flux measurements available show significant variability on timescales from days to years. The X-ray source RX J0043.2+4127, coincident with GC Bo 163, has been found to show recurrent transient outbursts with peak luminosities of ~1038 ergs s-1. Several sources in our sample show significant variability on a timescale of individual observations, ranging from aperiodic fluctuations to regular dipping. The X-ray luminosity function of GC sources is found to be significantly different from that of the point sources in the bulge and disk of M31. The luminosity distribution of M31 GC sources has ~10 times higher peak luminosity and a much higher fraction of bright sources than the Milky Way GC distribution. Six persistent sources in our sample (or ~14% of the total number) have luminosities exceeding 1038 ergs s-1 during all observations, and three other sources occasionally exceed that luminosity level. Our observations indicate that GC sources make the dominant contribution to the bright source counts in the areas of M31 covered by the survey: ~40% of the total number of sources with luminosities above 1037 ergs s-1 reside in GCs, with the fraction of GC sources rising to 67%-90% for luminosities above 1038 ergs s-1. The contribution of the GC sources to the total number of bright sources found in M31 is much higher than in the Milky Way but surprisingly close to that of early-type galaxies. We found that the brightest M31 GC sources tend to reside at large galactocentric distances outside the central bulge. We found that GCs hosting bright X-ray sources are optically brighter and more metal-rich than the rest of the M31 GCs, in agreement with previous studies. The brightest sources, with luminosities above ~1038 ergs s-1, show a tendency to reside in more metal-poor clusters. The remarkable similarities between the properties of the M31 GC X-ray sources and those of Galactic neutron star LMXBs lead us to expect most of the persistent M31 GC X-ray sources to be LMXB systems with neutron star primaries. However, the current X-ray spectral and timing data cannot rule out the possibility of finding active accreting black holes in our GC source sample.


Applied Optics | 1996

Laser ranging and mapping with a photon-counting detector.

William C. Priedhorsky; Randall C. Smith; Cheng Ho

We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images.

Collaboration


Dive into the William C. Priedhorsky's collaboration.

Top Co-Authors

Avatar

Konstantin N. Borozdin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sergey P. Trudolyubov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. A. Cordova

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. O. Mason

University College London

View shared research outputs
Top Co-Authors

Avatar

Joshua J. Bloch

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Wren

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane C. Roussel-Dupre

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey J. Bloch

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge