William Chi-Shing Tai
Hong Kong Baptist University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Chi-Shing Tai.
Science | 2008
Linna Tu; William Chi-Shing Tai; Lu Chen; David K. Banfield
Golgi-resident glycosyltransferases are a family of enzymes that sequentially modify glycoproteins in a subcompartment-specific manner. These type II integral membrane proteins are characterized by a short cytoplasmically exposed amino-terminal tail and a luminal enzymatic domain. The cytoplasmic tails play a role in the localization of glycosyltransferases, and coat protein complex I (COPI) vesicle–mediated retrograde transport is also involved in their Golgi localization. However, the tails of these enzymes lack known COPI-binding motifs. Here, we found that Vps74p bound to a pentameric motif present in the cytoplasmic tails of the majority of yeast Golgi-localized glycosyltransferases, as well as to COPI. We propose that Vps74p maintains the steady-state localization of Golgi glycosyltransferases dynamically, by promoting their incorporation into COPI-coated vesicles.
Life Sciences | 2009
Pui-Kei Wu; William Chi-Shing Tai; Zhi-Tao Liang; Zhong-Zhen Zhao; W.L. Wendy Hsiao
AIMS Oldenlandia diffusa (Willd.) Roxb. (O. diffusa) is a commonly used traditional Chinese medicine for treating cancer. Its pharmacological activities and anti-cancer effects have been the focus of intense research in recent years. In the present study, we aim to investigate whether the five major compounds from O. diffusa possess a unique inhibitory activity against ras-transformed cells in a well-established cell model. MAIN METHODS The anti-cancer effects of O. diffusa were assessed in a co-culture system containing normal and transformed Rat 6 (R6) fibroblasts. In addition, a transwell assay was used to examine the interaction between the drugs and the co-cultivated cells. KEY FINDINGS Our data showed that among the samples tested, oleanolic acid (OA), but not the structural isomer ursolic acid (UA), inhibits the growth of ras oncogene-transformed R6 cells at a dosage that is not toxic to the co-cultivated normal fibroblasts. A significant inhibitory effect was also observed in the transwell experiments, indicating that the mode of action for OA-mediated growth inhibition of transformed cells does not require direct cell-to-cell contact between normal and ras-transformed cells. Data obtained from experiments conducted with the conditioned medium that was collected from normal R6 cells treated with OA also suggest that OA might cause normal cells to secrete inhibitory factor(s) against the transformed cells. The enhanced ability of OA to cause cytotoxicity in transformed cells in the presence of normal fibroblasts is also observed with the human hepatocellular carcinoma cell line, SMMC-7721. SIGNIFICANCE The present study demonstrates that OA may possess both cancer chemotherapeutic and chemopreventive activities. Thus, it may have great potential for clinical application as a novel anti-cancer drug.
Scientific Reports | 2016
Guosheng Tan; Linwei Wu; Jinfu Tan; Bing Zhang; William Chi-Shing Tai; Shiqiu Xiong; Wei Chen; Jianyong Yang; Heping Li
Apoptosis resistance in human hepatocellular carcinoma (HCC) is a significant factor in carcinogenesis. Therefore, understanding the molecular mechanisms involved in apoptosis resistance is crucial for developing anticancer therapies. Importantly, small non-coding microRNAs (miRNAs) have been reported as key biomarkers for detecting tumour onset and progression. In the present study, we demonstrate that miR-1180 is upregulated in HCC. Ectopic expression of miR-1180 has an anti-apoptotic effect in HCC, while miR-1180 inhibition increases cell apoptosis, both in vitro and in vivo. Moreover, our results show that miR-1180 directly targets key inhibitors of the nuclear factor (NF)-κB signaling pathway (i.e., OTUD7B and TNIP2) and the pro-apoptotic Bcl-2 associated death promoter (BAD) protein by post-transcriptional downregulation. Therefore, the anti-apoptotic function of miR-1180 in HCC may occur through NF-κB pathway activation via downregulation of its negative regulators. In conclusion, our study reveals the critical role of miR-1180 during apoptosis resistance in HCC.
FEBS Letters | 2001
William Chi-Shing Tai; David K. Banfield
SNAREs are membrane‐associated proteins that play a central role in vesicle targeting and intra‐cellular membrane fusion reactions in eukaryotic cells. Here we describe the identification of AtBS14a and AtBS14b, putative SNAREs from Arabidopsis thaliana that share 60% amino acid sequence identity. Both AtBS14a and BS14b are dosage suppressors of the temperature‐sensitive growth defect in sft1‐1 cells and over‐expression of either AtBS14a or AtBS14b can support the growth of sft1Δ cells but not bet1Δ cells. These data together with structure–function and biochemical studies presented herein suggest that AtBS14a and AtBS14b share properties that are consistent with them being members of the Bet1/Sft1 SNARE protein family.
Journal of Ethnopharmacology | 2012
Ting-Fung Tsang; Yan Ye; William Chi-Shing Tai; Gui-Xin Chou; Alexander Kai-Man Leung; Zhi-Ling Yu; W.L. Wendy Hsiao
ETHNOPHARMACOLOGICAL RELEVANCE Qian-wang-hong-bai-san (QW), a Chinese herbal formula, is traditionally used as a skin whitening agent in China. AIM OF STUDY In our previous screening assays, QW was identified as an effective tyrosinase inhibitor. In this study, we aim to investigate the underlying mechanism of the anti-melanogenic effect of QW in B16 cells. MATERIALS AND METHODS Cytotoxicity of QW in B16 cell line was examined by MTT assay. Cellular tyrosinase activity was determined based on the melanin content measured at 475 nm with a microplate spectrophotometer. Protein expression was analyzed by Western blotting and quantified by Quantity One. RESULTS QW dose-dependently inhibited tyrosinase activity and decreased melanin content at 48 h without significant cytotoxicity in B16 cells. Western blot analysis showed that QW treatment down-regulated the expression levels of phospho-p38, phospho-CREB, MITF, tyrosinase, TRP-1 and TRP-2 in a dose-dependent manner. At the same time, QW treatment for 48 h inhibited IBMX-induced elevation of cellular melanin content and tyrosinase activity. However, the attenuation of IBMX-mediated up-regulations of phospho-CREB and phospho-PKA was readily observed with 60 min of QW treatment. CONCLUSIONS The anti-melanogenic activity of QW in B16 melanoma cells can be attributed, at least in part, to the inhibition of the p38 MAPK and PKA signaling pathways. These findings shed new light on the molecular mechanisms of the skin-whitening property of QW.
Chinese Medicine | 2014
Carmen Ka-Man Law; Hoi-Hin Kwok; Po-Ying Poon; Chi-Chiu Lau; Zhi-Hong Jiang; William Chi-Shing Tai; Wendy W.L. Hsiao; Nai-Ki Mak; Patrick Ying-Kit Yue; Ricky Ngok-Shun Wong
BackgroundNasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism.MethodsThe cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry.ResultsFour ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death.ConclusionGinsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.
Food Chemistry | 2011
Pui-Kei Wu; William Chi-Shing Tai; Roy Chi Yan Choi; Karl Wah Keung Tsim; Hua Zhou; Xin Liu; Zhi-Hong Jiang; W.L. Wendy Hsiao
Gynostemma pentaphyllum Makino (Gp) was once used as a sweetener in Japan and is now widely consumed as an herbal tea worldwide for lowering cholesterol levels. Two taste variants, bitter and sweet, of Gp exist in the commercial market, but they cannot be differentiated morphologically nor by existing chemical analytical methods. This has been creating a problem in quality control of Gp products. In the present study, using HPLC-DAD and HPLC-ESI-MS analysis, we found that the Gp saponins, not flavonoids, from the sweet and bitter variants have distinctly different profiles. In addition, the two variants share only 69.01% homology in the ribosomal ITS-1 region, suggesting a phylogenic gap between these two variants. The combinations of chemical profiling and phylogenic analysis clearly confirm, for the first time, the distinction between these two taste variants. This information has direct application in the authentication and quality assessment of the various Gynostemma tea products.
Proteomics | 2016
Wing-Yan Wong; Magnolia Muk-Lan Lee; Brandon Dow Chan; Richard Kin-Tin Kam; Ge Zhang; Ai-Ping Lu; William Chi-Shing Tai
Macrophages are essential for the maintenance of intestinal homeostasis, and their activation has been proposed to be critical to the pathogenesis of inflammatory bowel disease (IBD). Although there are many recognized mediators of macrophage activation, increasing evidence suggests that macrophages respond to exosome stimulation. Exosomes are 40–150 nm microvesicles released from different cell types and are found in a variety of physiological fluids, including serum. As studies have shown that circulating exosomes participate in intercellular communication and can mediate the immune response, we hypothesized that exosomes may play a role in the pathogenesis of IBD though modulation of macrophage activity. In this study, we used the dextran sulfate sodium (DSS) induced acute colitis mice model to investigate the effect of serum exosomes on macrophages and identify exosome proteins potentially involved in macrophage activation. We treated RAW264.7 macrophages with serum exosomes isolated from dextran sulfate sodium induced mice and found that treatment induced phosphorylation of p38 and ERK and production of tumor necrosis factor α when compared to treatment with exosomes isolated from control mice. Subsequent proteomic analysis identified 56 differentially expressed proteins, a majority of which were acute‐phase proteins and immunoglobulins. Bioinformatics analysis suggested these proteins were mainly involved in the complement and coagulation cascade, which has been implicated in macrophage activation. Our findings provide new insight into the role of circulating serum exosomes in acute colitis and contribute to the understanding of macrophage activation in the pathogenesis of IBD.
Chemical Research in Toxicology | 2015
Yan-Hong Li; William Chi-Shing Tai; Junyi Xue; Wing-Yan Wong; Cheng Lu; Jianqing Ruan; Na Li; Tai-Fung Wan; Wood-Yee Chan; W.L. Wendy Hsiao; Ge Lin
Pyrrolizidine alkaloids (PAs) are a group of phytotoxins that can induce human liver injury, particularly hepatic sinusoidal obstruction syndrome (HSOS). To date, the molecular targets of PA-induced HSOS are largely unknown. In this study, retrorsine (RTS), a known hepatotoxic PA, was used as a representative PA for proteomic studies. Toxicological assessment demonstrated that 35 mg/kg RTS (designated as RTS-L) caused early lesions of HSOS at 24 h after dosing. A proteomic approach revealed 17 up-regulated and 31 down-regulated proteins in RTS-L-treated rats. Subsequently, bioinformatic analysis suggested that two proteins, carbamoyl-phosphate synthase (CPS1) (p < 0.05) and ATP synthase subunit beta (ATP5B) (p < 0.01) were associated with RTS-L intoxication. Using immunohistochemical staining, we further verified the down-regulation of CPS1 and ATP5B in RTS-L-treated rats. These findings indicated that CPS1 and ATP5B were altered in the RTS-induced early lesions of HSOS in rats, and therefore, these two proteins and their involved pathways might play important roles in the initiation of HSOS. To the best of our knowledge, our study using a proteomic approach combined with conventional toxicological assessment is the first systems toxicology study on PA-induced HSOS. The results of this study provide novel findings on protein profiles in response to PA exposure, which can serve as a starting point to further investigate potential protein targets and their interactions with PAs to induce HSOS.
Life Sciences | 2012
Marco Man Kin Tsui; William Chi-Shing Tai; Wing Yan Wong; W.L. Wendy Hsiao
AIMS Lithium is a common mood stabilizer to treat bipolar disorder. It has a narrow window of therapeutic action and its mechanism of action and possible side effects are still not fully understood. Lithium is a potent inhibitor of glycogen synthase kinase 3β (GSK-3β). Previous studies indicated that lithium can induce cell cycle arrest by stabilization of p53. In order to further elucidate the signaling mechanism of lithium-induced cell cycle arrest and its potential pharmacological effect on p53 transformed cell lines, we studied the effect of lithium on the rat fibroblast cell line R6 and a p53(Val135) transformed cell line R6T2 (hereafter referred to as T2). MAIN METHODS We monitored the effects of lithium on cell cycle progression by FACS analysis and the activation of MAPK signaling pathways by Western blot using anti-phospho-MAPK antibodies in R6 and T2. KEY FINDINGS We report here lithium can induce G2/M arrest in T2 independent of β-catenin signals. Lithium increases phosphorylation of extracellular signal-regulated kinases (ERKs) leading to the up-regulation of p53 levels and subsequent G2/M arrest. Lithium also induced phosphorylation of p38 MAPK, consequently downregulated p53 and alleviated G2/M cell cycle arrest. We further showed the gate-keeping role of p53 in the lithium-induced G2/M arrest in the T2 cell line. SIGNIFICANCE Our results reveal a novel mechanism underlying the differential response of the transformed and normal R6 to lithium-induced G2/M cell cycle arrest and delineate the multiplicity of signaling pathways dictating the cell fate in responding to cell stress signals.