Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William D. Figg is active.

Publication


Featured researches published by William D. Figg.


Journal of Clinical Oncology | 2009

Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients With Cutaneous T-Cell Lymphoma

Richard Piekarz; Robin Frye; Maria L. Turner; John J. Wright; Steven L. Allen; Mark Kirschbaum; Jasmine Zain; H. Miles Prince; John P. Leonard; Larisa J. Geskin; Craig B. Reeder; David Joske; William D. Figg; Erin R. Gardner; Seth M. Steinberg; Elaine S. Jaffe; Maryalice Stetler-Stevenson; Stephen Lade; A. Tito Fojo; Susan E. Bates

PURPOSE Romidepsin (depsipeptide or FK228) is a member of a new class of antineoplastic agents active in T-cell lymphoma, the histone deacetylase inhibitors. On the basis of observed responses in a phase I trial, a phase II trial of romidepsin in patients with T-cell lymphoma was initiated. PATIENTS AND METHODS The initial cohort was limited to patients with cutaneous T-cell lymphoma (CTCL), or subtypes mycosis fungoides or Sézary syndrome, who had received no more than two prior cytotoxic regimens. There were no limits on other types of therapy. Subsequently, the protocol was expanded to enroll patients who had received more than two prior cytotoxic regimens. Results Twenty-seven patients were enrolled onto the first cohort, and a total of 71 patients are included in this analysis. These patients had undergone a median of four prior treatments, and 62 patients (87%) had advanced-stage disease (stage IIB, n = 15; stage III, n= 6; or stage IV, n = 41). Toxicities included nausea, vomiting, fatigue, and transient thrombocytopenia and granulocytopenia. Pharmacokinetics were evaluated with the first administration of romidepsin. Complete responses were observed in four patients, and partial responses were observed in 20 patients for an overall response rate of 34% (95% CI, 23% to 46%). The median duration of response was 13.7 months. CONCLUSION The histone deacetylase inhibitor romidepsin has single-agent clinical activity with significant and durable responses in patients with CTCL.


Journal of Clinical Oncology | 1998

Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms.

Adrian M. Senderowicz; Donna Headlee; S F Stinson; Richard M. Lush; N Kalil; L Villalba; K Hill; Seth M. Steinberg; William D. Figg; Anne Tompkins; Susan G. Arbuck; Edward A. Sausville

PURPOSE We conducted a phase I trial of the cyclin-dependent kinase inhibitor, flavopiridol (National Service Center [NSC] 649890), to determine the maximum-tolerated dose (MTD), toxicity profile, and pharmacology of flavopiridol given as a 72-hour infusion every 2 weeks. PATIENTS AND METHODS Seventy-six patients with refractory malignancies with prior disease progression were treated with flavopiridol, with first-cycle pharmacokinetic sampling. RESULTS Forty-nine patients defined our first MTD, 50 mg/m2/d x 3 with dose-limiting toxicity (DLT) of secretory diarrhea at 62.5 mg/kg/d x 3. Subsequent patients received antidiarrheal prophylaxis (ADP) to define a second MTD, 78 mg/m2/d x 3 with DLT of hypotension at 98 mg/m2/d x 3. Other toxicities included a proinflammatory syndrome with alterations in acute-phase reactants, particularly at doses >50 mg/ m2/d x 3, which in some patients prevented chronic therapy every 2 weeks. In some patients, ADP was not successful, requiring dose-deescalation. Although approximately 70% of patients displayed predictable flavopiridol pharmacology, we observed unexpected interpatient variability and postinfusion peaks in approximately 30% of cases. At the two MTDs, we achieved a mean plasma flavopiridol concentration of 271 nM (50 mg/m2/d x 3) and 344 nM (78 mg/m2/d x 3), respectively. One partial response in a patient with renal cancer and minor responses (n=3) in patients with non-Hodgkins lymphoma, colon, and renal cancer occurred. CONCLUSION The MTD of infusional flavopiridol is 50 mg/m2/d x 3 with dose-limiting secretory diarrhea at 62.5 mg/m2/d x 3. With ADP, 78 mg/m2/d x 3 was the MTD, with dose-limiting hypotension at 98 mg/m2/d x 3. Based on chronic tolerability, 50 mg/m2/d x 3 is the recommended phase II dose without ADP. Antitumor effect was observed in certain patients with renal, prostate, and colon cancer, and non-Hodgkins lymphoma. Concentrations of flavopiridol (200 to 400 nM) needed for cyclin-dependent kinase inhibition in preclinical models were achieved safely.


Journal of Clinical Oncology | 2004

Randomized Phase II Trial of Docetaxel Plus Thalidomide in Androgen-Independent Prostate Cancer

William L. Dahut; James L. Gulley; Philip M. Arlen; Yinong Liu; Katherine M. Fedenko; Seth M. Steinberg; John J. Wright; Howard L. Parnes; Clara C. Chen; Elizabeth Jones; Catherine Parker; W. Marston Linehan; William D. Figg

PURPOSE Both docetaxel and thalidomide have demonstrated activity in androgen-independent prostate cancer (AIPC). We compared the efficacy of docetaxel to docetaxel plus thalidomide in patients with AIPC. METHODS Seventy-five patients with chemotherapy-naïve metastatic AIPC were randomly assigned to receive either docetaxel 30 mg/m(2) intravenously every week for 3 consecutive weeks, followed by a 1-week rest period (n = 25); or docetaxel at the same dose and schedule, plus thalidomide 200 mg orally each day (n = 50). Prostate-specific antigen (PSA) consensus criteria and radiographic scans were used to determine the proportion of patients with a PSA decline, and time to progression. RESULTS After a median potential follow-up time of 26.4 months, the proportion of patients with a greater than 50% decline in PSA was higher in the docetaxel/thalidomide group (53% in the combined group, 37% in docetaxel-alone arm). The median progression-free survival in the docetaxel group was 3.7 months and 5.9 months in the combined group (P =.32). At 18 months, overall survival in the docetaxel group was 42.9% and 68.2% in the combined group. Toxicities in both groups were manageable after administration of prophylactic low-molecular-weight heparin in the combination group. CONCLUSION In this randomized phase II trial, the addition of thalidomide to docetaxel resulted in an encouraging PSA decline rate and overall median survival rate in patients with metastatic AIPC. After the prophylactic low-molecular-weight heparin was instituted to prevent venous thromboses, the combination regimen was well tolerated. Larger randomized trials are warranted to assess the impact of this combination.


Journal of Clinical Oncology | 2005

Phase I and Pharmacokinetic Study of MS-275, a Histone Deacetylase Inhibitor, in Patients With Advanced and Refractory Solid Tumors or Lymphoma

Qin C. Ryan; Donna Headlee; Milin R. Acharya; Alex Sparreboom; Jane B. Trepel; Joseph Z. Ye; William D. Figg; Kyunghwa Hwang; Eun Joo Chung; Anthony J. Murgo; Giovanni Melillo; Yusri A. Elsayed; Manish Monga; Mikhail Kalnitskiy; James A. Zwiebel; Edward A. Sausville

PURPOSE The objective of this study was to define the maximum-tolerated dose (MTD), the recommended phase II dose, the dose-limiting toxicity, and determine the pharmacokinetic (PK) and pharmacodynamic profiles of MS-275. PATIENTS AND METHODS Patients with advanced solid tumors or lymphoma were treated with MS-275 orally initially on a once daily x 28 every 6 weeks (daily) and later on once every-14-days (q14-day) schedules. The starting dose was 2 mg/m2 and the dose was escalated in three- to six-patient cohorts based on toxicity assessments. RESULTS With the daily schedule, the MTD was exceeded at the first dose level. Preliminary PK analysis suggested the half-life of MS-275 in humans was 39 to 80 hours, substantially longer than predicted by preclinical studies. With the q14-day schedule, 28 patients were treated. The MTD was 10 mg/m2 and dose-limiting toxicities were nausea, vomiting, anorexia, and fatigue. Exposure to MS-275 was dose dependent, suggesting linear PK. Increased histone H3 acetylation in peripheral-blood mononuclear-cells was apparent at all dose levels by immunofluorescence analysis. Ten of 29 patients remained on treatment for > or = 3 months. CONCLUSION The MS-275 oral formulation on the daily schedule was intolerable at a dose and schedule explored. The q14-day schedule is reasonably well tolerated. Histone deacetylase inhibition was observed in peripheral-blood mononuclear-cells. Based on PK data from the q14-day schedule, a more frequent dosing schedule, weekly x 4, repeated every 6 weeks is presently being evaluated.


Journal of Clinical Oncology | 2008

Combination Targeted Therapy With Sorafenib and Bevacizumab Results in Enhanced Toxicity and Antitumor Activity

Nilofer S. Azad; Edwin M. Posadas; Virginia E. Kwitkowski; Seth M. Steinberg; Lokesh Jain; Christina M. Annunziata; Lori M. Minasian; Gisele Sarosy; Herbert L. Kotz; Ahalya Premkumar; Liang Cao; Deborah McNally; Catherine Chow; Helen X. Chen; John J. Wright; William D. Figg; Elise C. Kohn

PURPOSE Sorafenib inhibits Raf kinase and vascular endothelial growth factor (VEGF) receptor. Bevacizumab is a monoclonal antibody targeted against VEGF. We hypothesized that the complementary inhibition of VEGF signaling would have synergistic therapeutic effects. PATIENTS AND METHODS Patients had advanced solid tumors, Eastern Cooperative Oncology Group performance status of 0 to 1, and good end-organ function. A phase I dose-escalation trial of sorafenib and bevacizumab was initiated at below-recommended single-agent doses because of possible overlapping toxicity: sorafenib 200 mg orally twice daily and bevacizumab intravenously at 5 mg/kg (dose level [DL] 1) or 10 mg/kg (DL2) every 2 weeks. Additional patients were enrolled at the maximum-tolerated dose (MTD). RESULTS Thirty-nine patients were treated. DL1 was the MTD and administered in cohort 2 (N = 27). Dose-limiting toxicity in DL2 was grade 3 proteinuria and thrombocytopenia. Adverse events included hypertension, hand-foot syndrome, diarrhea, transaminitis, and fatigue. Partial responses (PRs) were seen in six (43%) of 13 patients with ovarian cancer (response duration range, 4 to 22+ months) and one of three patients with renal cell cancer (response duration, 14 months). PR or disease stabilization >or= 4 months (median, 6 months; range, 4 to 22+ months) was seen in 22 (59%) of 37 assessable patients. The majority (74%) required sorafenib dose reduction to 200 mg/d at a median of four cycles (range, one to 12 cycles). CONCLUSION Combination therapy with sorafenib and bevacizumab has promising clinical activity, especially in patients with ovarian cancer. The rapidity and frequency of sorafenib dose reductions indicates that sorafenib at 200 mg twice daily with bevacizumab 5 mg/kg every 2 weeks may not be tolerable long term, and alternate sorafenib dosing schedules should be explored.


Biochemical Pharmacology | 1998

Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent.

Kenneth S. Bauer; Shannon C. Dixon; William D. Figg

Thalidomide has been shown to be an inhibitor of angiogenesis in a rabbit cornea micropocket model; however, it has failed to demonstrate this activity in other models. These results suggest that the anti-angiogenic effects of thalidomide may only be observed following metabolic activation of the compound. This activation process may be species specific, similar to the teratogenic properties associated with thalidomide. Using a rat aorta model and human aortic endothelial cells, we co-incubated thalidomide in the presence of either human, rabbit, or rat liver microsomes. These experiments demonstrated that thalidomide inhibited microvessel formation from rat aortas and slowed human aortic endothelial cell proliferation in the presence of human or rabbit microsomes, but not in the presence of rat microsomes. In the absence of microsomes, thalidomide had no effect on either microvessel formation or cell proliferation, thus demonstrating that a metabolite of thalidomide is responsible for its anti-angiogenic effects and that this metabolite can be formed in both humans and rabbits, but not in rodents.


Blood | 2011

Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma

Richard Piekarz; Robin Frye; H. Miles Prince; Mark Kirschbaum; Jasmine Zain; Steven L. Allen; Elaine S. Jaffe; Alexander Ling; Maria L. Turner; Cody J. Peer; William D. Figg; Seth M. Steinberg; Sonali M. Smith; David Joske; Ian D. Lewis; Laura F. Hutchins; Michael Craig; A. Tito Fojo; John J. Wright; Susan E. Bates

Romidepsin (depsipeptide or FK228) is a histone deacetylase inhibitor, one of a new class of agents active in T-cell lymphoma. A phase 2 trial was conducted in cutaneous (CTCL) and peripheral (PTCL) T-cell lymphoma. Major and durable responses in CTCL supported the approval of romidepsin for CTCL. Forty-seven patients with PTCL of various subtypes including PTCL NOS, angioimmunoblastic, ALK-negative anaplastic large cell lymphoma, and enteropathy-associated T-cell lymphoma were enrolled. All patients had received prior therapy with a median of 3 previous treatments (range 1-11); 18 (38%) had undergone stem-cell transplant. All patients were evaluated for toxicity; 2 patients discovered to be ineligible were excluded from response assessment. Common toxicities were nausea, fatigue, and transient thrombocytopenia and granulocytopenia. Complete responses were observed in 8 and partial responses in 9 of 45 patients, for an overall response rate of 38% (95% confidence interval 24%-53%). The median duration of overall response was 8.9 months (range 2-74). Responses were observed in various subtypes, with 6 responses among the 18 patients with prior stem-cell transplant. The histone deacetylase inhibitor romidepsin has single agent clinical activity associated with durable responses in patients with relapsed PTCL.


Journal of Clinical Oncology | 2001

Phase I Trial of 72-Hour Continuous Infusion UCN-01 in Patients With Refractory Neoplasms

Edward A. Sausville; Susan G. Arbuck; Richard A. Messmann; Donna Headlee; Kenneth S. Bauer; Richard M. Lush; Anthony J. Murgo; William D. Figg; Tyler Lahusen; Susan Jaken; Xiu-xian Jing; Michel Roberge; Eiichi Fuse; Takashi Kuwabara; Adrian M. Senderowicz

PURPOSE To define the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of the novel protein kinase inhibitor, UCN-01 (7-hydroxystaurosporine), administered as a 72-hour continuous intravenous infusion (CIV). PATIENTS AND METHODS Forty-seven patients with refractory neoplasms received UCN-01 during this phase I trial. Total, free plasma, and salivary concentrations were determined; the latter were used to address the influence of plasma protein binding on peripheral tissue distribution. The phosphorylation state of the protein kinase C (PKC) substrate alpha-adducin and the abrogation of DNA damage checkpoint also were assessed. RESULTS The recommended phase II dose of UCN-01 as a 72-hour CIV is 42.5 mg/m(2)/d for 3 days. Avid plasma protein binding of UCN-01, as measured during the trial, dictated a change in dose escalation and administration schedules. Therefore, nine patients received drug on the initial 2-week schedule, and 38 received drug on the recommended 4-week schedule. DLTs at 53 mg/m(2)/d for 3 days included hyperglycemia with resultant metabolic acidosis, pulmonary dysfunction, nausea, vomiting, and hypotension. Pharmacokinetic determinations at the recommended dose of 42.5 mg/m(2)/d for 3 days included mean total plasma concentration of 36.4 microM (terminal elimination half-life range, 447 to 1176 hours), steady-state volume of distribution of 9.3 to 14.2 L, and clearances of 0.005 to 0.033 L/h. The mean total salivary concentration was 111 nmol/L of UCN-01. One partial response was observed in a patient with melanoma, and one protracted period ( > 2.5 years) of disease stability was observed in a patient with alk-positive anaplastic large-cell lymphoma. Preliminary evidence suggests UCN-01 modulation of both PKC substrate phosphorylation and the DNA damage-related G(2) checkpoint. CONCLUSION UCN-01 can be administered safely as an initial 72-hour CIV with subsequent monthly doses administered as 36-hour infusions.


Journal of Clinical Oncology | 2000

Activity of Thalidomide in AIDS-Related Kaposi’s Sarcoma

Richard F. Little; Kathleen M. Wyvill; James M. Pluda; Lauri Welles; Vickie Marshall; William D. Figg; Fonda M. Newcomb; Giovanna Tosato; Ellen Feigal; Seth M. Steinberg; Denise Whitby; James J. Goedert; Robert Yarchoan

PURPOSE To assess the toxicity and activity of oral thalidomide in Kaposis sarcoma (KS) in a phase II dose-escalation study. PATIENTS AND METHODS Human immunodeficiency virus (HIV)-seropositive patients with biopsy-confirmed KS that progressed over the 2 months before enrollment received an initial dose of 200 mg/d of oral thalidomide in a phase II study. The dose was increased to a maximum of 1,000 mg/d for up to 1 year. Anti-HIV therapy was maintained during the study period. Toxicity, tumor response, immunologic and angiogenic factors, and virologic parameters were assessed. RESULTS Twenty patients aged 29 to 49 years with a median CD4 count of 246 cells/mm(3) (range, 14 to 646 cells/mm(3)) were enrolled. All patients were assessable for toxicity, and 17 for response. Drowsiness in nine and depression in seven patients were the most frequent toxicities observed. Eight (47%; 95% confidence interval [CI], 23% to 72%) of the 17 assessable patients achieved a partial response, and an additional two patients had stable disease. Based on all 20 patients treated, the response rate was 40% (95% CI, 19% to 64%). The median thalidomide dose at the time of response was 500 mg/d (range, 400 to 1,000 mg/d). The median duration of drug treatment was 6.3 months, and the median time to progression was 7.3 months. CONCLUSION Oral thalidomide was tolerated in this population at doses up to 1,000 mg/d for as long as 12 months and was found to induce clinically meaningful anti-KS responses in a sizable subset of the patients. Additional studies of this agent in KS are warranted.


Clinical Cancer Research | 2007

Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo

Joell J. Gills; Jaclyn LoPiccolo; Junji Tsurutani; Robert H. Shoemaker; Carolyn J.M. Best; Mones Abu-Asab; Jennifer P. Borojerdi; Noel A. Warfel; Erin R. Gardner; Matthew Danish; M. Christine Hollander; Shigeru Kawabata; Maria Tsokos; William D. Figg; Patricia S. Steeg; Phillip A. Dennis

Purpose: The development of new cancer drugs is slow and costly. HIV protease inhibitors are Food and Drug Administration approved for HIV patients. Because these drugs cause toxicities that can be associated with inhibition of Akt, an emerging target in cancer, we assessed the potential of HIV protease inhibitors as anticancer agents. Experimental Design: HIV protease inhibitors were screened in vitro using assays that measure cellular proliferation, apoptotic and nonapoptotic cell death, endoplasmic reticulum (ER) stress, autophagy, and activation of Akt. Nelfinavir was tested in non–small cell lung carcinoma (NSCLC) xenografts with biomarker assessment. Results: Three of six HIV protease inhibitors, nelfinavir, ritonavir, and saquinavir, inhibited proliferation of NSCLC cells, as well as every cell line in the NCI60 cell line panel. Nelfinavir was most potent with a mean 50% growth inhibition of 5.2 μmol/L, a concentration achievable in HIV patients. Nelfinavir caused two types of cell death, caspase-dependent apoptosis and caspase-independent death that was characterized by induction of ER stress and autophagy. Autophagy was protective because an inhibitor of autophagy increased nelfinavir-induced death. Akt was variably inhibited by HIV protease inhibitors, but nelfinavir caused the greatest inhibition of endogenous and growth factor–induced Akt activation. Nelfinavir decreased the viability of a panel of drug-resistant breast cancer cell lines and inhibited the growth of NSCLC xenografts that was associated with induction of ER stress, autophagy, and apoptosis. Conclusions: Nelfinavir is a lead HIV protease inhibitor with pleiotropic effects in cancer cells. Given its wide spectrum of activity, oral availability, and familiarity of administration, nelfinavir is a Food and Drug Administration–approved drug that could be repositioned as a cancer therapeutic.

Collaboration


Dive into the William D. Figg's collaboration.

Top Co-Authors

Avatar

William L. Dahut

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Douglas K. Price

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seth M. Steinberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cody J. Peer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tristan M. Sissung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alex Sparreboom

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

James L. Gulley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eddie Reed

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cindy H. Chau

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Venzon

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge