Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William D. Hardie is active.

Publication


Featured researches published by William D. Hardie.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma.

Timothy D. Le Cras; Thomas H. Acciani; Elizabeth M. Mushaben; Elizabeth L. Kramer; Patricia A. Pastura; William D. Hardie; Thomas R. Korfhagen; Umasundari Sivaprasad; Mark B. Ericksen; Aaron M. Gibson; Michael J. Holtzman; Jeffrey A. Whitsett; Gurjit K. Khurana Hershey

Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk. EGFR signaling was inhibited in mice treated with HDM for 6 wk, by using either the drug erlotinib or a genetic approach that utilizes transgenic mice expressing a mutant dominant negative epidermal growth factor receptor in the lung epithelium (EGFR-M mice). Airway hyperreactivity (AHR) was assessed by use of a flexiVent system after increasing doses of nebulized methacholine. Airway smooth muscle (ASM) thickening was measured by morphometric analysis. Sensitization to HDM (IgG and IgE), inflammatory cells, and goblet cell changes were also assessed. Increased EGFR activation was detected in HDM-treated mice, including in bronchiolar epithelial cells. In mice exposed to HDM for 6 wk, AHR and ASM thickening were reduced after erlotinib treatment and in EGFR-M mice. Sensitization to HDM and inflammatory cell counts were similar in all groups, except neutrophil counts, which were lower in the EGFR-M mice. Goblet cell metaplasia with HDM treatment was reduced by erlotinib, but not in EGFR-M transgenic mice. This study demonstrates that EGFR signaling, especially in the airway epithelium, plays an important role in mediating AHR and remodeling in a chronic allergic asthma model.


American Journal of Respiratory Cell and Molecular Biology | 2009

Rapamycin Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis

Thomas R. Korfhagen; Timothy D. Le Cras; Cynthia Davidson; Stephanie Schmidt; Machiko Ikegami; Jeffrey A. Whitsett; William D. Hardie

Transforming growth factor (TGF)-alpha is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-alpha in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-alpha. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-alpha prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis

William D. Hardie; Cynthia Davidson; Machiko Ikegami; George D. Leikauf; Timothy D. Le Cras; Adrienne Prestridge; Jeffrey A. Whitsett; Thomas R. Korfhagen

Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.


Cell Cycle | 2010

Signaling pathways in the epithelial origins of pulmonary fibrosis

William D. Hardie; James S. Hagood; Vrushank Davé; Anne-Karina T. Perl; Jeffrey A. Whitsett; Thomas R. Korfhagen; Stephan W. Glasser

Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis.


American Journal of Respiratory Cell and Molecular Biology | 2012

MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation.

Satish K. Madala; Stephanie Schmidt; Cynthia Davidson; Machiko Ikegami; Susan E. Wert; William D. Hardie

Pulmonary fibrosis remains a significant public health burden with no proven therapies. The mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade is a major pathway controlling cellular processes associated with fibrogenesis, including growth, proliferation, and survival. Activation of the MAPK/ERK pathway is detected in the lungs of human fibrosis samples; however, the effect of modulating the pathway in vivo is unknown. Overexpression of transforming growth factor (TGF)-α in the lung epithelium of transgenic mice causes a progressive pulmonary fibrosis associated with increased MEK/ERK activation localized primarily in mesenchymal cells. To determine the role of the MEK pathway in the induction of TGF-α-induced lung fibrosis, TGF-α was overexpressed for 4 weeks while mice were simultaneously treated with the specific MEK inhibitor, ARRY-142886 (ARRY). Treatment with ARRY prevented increases in lung cell proliferation and total lung collagen, attenuated production of extracellular matrix genes, and protected mice from changes in lung function. ARRY administered as a rescue treatment after fibrosis was already established inhibited fibrosis progression, as assessed by lung histology, changes in body weights, extracellular matrix gene expression, and lung mechanics. These findings demonstrate that MEK inhibition prevents progression of established fibrosis in the TGF-α model, and provides proof of concept of targeting the MEK pathway in fibrotic lung disease.


Pediatric Pulmonology | 2008

Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria

Jeffrey S. Loeb; Walter C. Blower; Julie F. Feldstein; Beth Koch; Asia L. Munlin; William D. Hardie

Spirometry in pediatrics can be limited by the childs development which is usually related to age. In 2005 the American Thoracic Society (ATS) and European Respiratory Society (ERS) published updated quality control criteria for spirometry. In 2007 the ATS/ERS published specific criteria for spirometry in preschool children 6 years of age and younger. Our primary objective was to determine the influence of age on the ability of children to meet updated spirometry criteria for acceptable and repeatable tests. Our second objective was to determine which criteria are associated with unacceptable tests. Data was prospectively collected over 12 months for children 4–17 years of age performing spirometry for the first time. Unsuccessful tests were analyzed to determine specific criteria not achieved. Three hundred ninety‐three studies were collected and 292 (74%) met recently revised ATS/ERS criteria for acceptable and repeatable tests. Acceptable and repeatable test success was not correlated to the gender or race of the children. The percentage of acceptable and repeatable spirometry increased with age rising above 50% by age 6 and reached a plateau with approximately 85% success at age 10. The most common unmet criteria for an unacceptable study among preschool children was glottic closure and non‐maximal efforts, while in school‐age children was failure to plateau. These data demonstrate most children are able to perform acceptable/repeatable spirometry with their first effort based on revised ATS/ERS criteria. Pediatr Pulmonol. 2008; 43:1020–1024.


American Journal of Respiratory and Critical Care Medicine | 2009

Matrix Metalloproteinase-14 Mediates a Phenotypic Shift in the Airways to Increase Mucin Production

Hitesh Deshmukh; Anne McLachlan; Jeffrey J. Atkinson; William D. Hardie; Thomas R. Korfhagen; Maggie Dietsch; Yang Liu; Peter Di; Scott C. Wesselkamper; Michael T. Borchers; George D. Leikauf

RATIONALE Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). OBJECTIVES To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. METHODS MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. MEASUREMENTS AND MAIN RESULTS In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. CONCLUSIONS Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.


American Journal of Respiratory Cell and Molecular Biology | 2009

Early Growth Response-1 Suppresses Epidermal Growth Factor Receptor–Mediated Airway Hyperresponsiveness and Lung Remodeling in Mice

Elizabeth L. Kramer; Elizabeth M. Mushaben; Patricia A. Pastura; Thomas H. Acciani; Gail H. Deutsch; Gurjit K. Khurana Hershey; Thomas R. Korfhagen; William D. Hardie; Jeffrey A. Whitsett; Timothy D. Le Cras

Transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-alpha in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-alpha in airway epithelium (Clara cell secretory protein-rtTA(+/-)/[tetO](7)-TGF-alpha(+/-)). The goal of this study was to determine the role of Egr-1 in TGF-alpha-induced lung disease. To accomplish this, TGF-alpha-transgenic mice were crossed to Egr-1 knockout (Egr-1(ko/ko)) mice. The lack of Egr-1 markedly increased the severity of TGF-alpha-induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1(ko/ko) mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor-mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

Satish K. Madala; Thomas R. Korfhagen; Stephanie Schmidt; Cynthia Davidson; Machiko Ikegami; Shelia M. Violette; Paul H. Weinreb; Dean Sheppard; William D. Hardie

A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of the β6 integrin attenuated histological and physiological changes in the lungs of TGF-α transgenic mice although a significant degree of fibrosis still developed. In summary, inhibition of the β6 integrin led to a modest, albeit significant, effect on pleural thickening and lung function decline observed with TGF-α-induced pulmonary fibrosis. These data support activation of the αvβ6/TGF-β pathway as a secondary effect contributing to TGF-α-induced pleural fibrosis and suggest a complex contribution of multiple mediators to the maintenance of progressive fibrosis in the lung.


American Journal of Respiratory Cell and Molecular Biology | 2014

Bone Marrow–Derived Stromal Cells Are Invasive and Hyperproliferative and Alter Transforming Growth Factor-α–Induced Pulmonary Fibrosis

Satish K. Madala; Stephanie Schmidt; Cynthia Davidson; Machiko Ikegami; William D. Hardie

Pulmonary fibrosis is caused by excessive proliferation and accumulation of stromal cells. Fibrocytes are bone marrow (BM)-derived cells that contribute to pathologic stromal cell accumulation in human lung disease. However, the cellular source for these stromal cells and the degree of fibrocyte contribution to pulmonary fibrosis remain unclear. To determine the etiology of stromal cell excess during pulmonary fibrosis, we measured fibrocytes during the progression of fibrosis in the transforming growth factor (TGF)-α transgenic mouse model. Lung epithelial-specific overexpression of TGF-α led to progressive pulmonary fibrosis associated with increased accumulation of fibrocytes in the fibrotic lesions. Although reconstitution of BM cells into TGF-α mice demonstrated accumulation of these cells in fibrotic lesions, the majority of the cells did not express α-smooth muscle actin, suggesting that fibrocytes did not transform into myofibroblasts. To explore the mechanisms of fibrocytes in pulmonary fibrogenesis, adoptive cell-transfer experiments were performed. Purified fibrocytes were transferred intravenously into TGF-α transgenic mice, and fibrosis endpoints were compared with controls. Analysis of lung histology and hydroxyproline levels demonstrated that fibrocyte transfers augment TGF-α-induced lung fibrosis. A major subset of TGF-α-induced fibrocytes expressed CD44 and displayed excessive invasiveness, which is attenuated in the presence of anti-CD44 antibodies. Coculture experiments of resident fibroblasts with fibrocytes demonstrated that fibrocytes stimulate proliferation of resident fibroblasts. In summary, fibrocytes are increased in the progressive, fibrotic lesions of TGF-α-transgenic mice and activate resident fibroblasts to cause severe lung disease.

Collaboration


Dive into the William D. Hardie's collaboration.

Top Co-Authors

Avatar

Thomas R. Korfhagen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cynthia Davidson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satish K. Madala

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Whitsett

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Machiko Ikegami

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephanie Schmidt

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy D. Le Cras

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Prows

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge