Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William D. Shipe is active.

Publication


Featured researches published by William D. Shipe.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation

Lei Ma; Matthew A. Seager; Marion Wittmann; Marlene A. Jacobson; Denise Bickel; Maryann Burno; Keith Jones; Valerie Kuzmick Graufelds; Guangping Xu; Michelle Pearson; Alexander McCampbell; Renee C. Gaspar; Paul J. Shughrue; Andrew Danziger; Christopher P. Regan; Rose Flick; Danette Pascarella; Susan L. Garson; Scott M. Doran; Constantine Kreatsoulas; Lone Veng; Craig W. Lindsley; William D. Shipe; Scott D. Kuduk; Cyrille Sur; Gene G. Kinney; Guy R. Seabrook; William J. Ray

The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). During Alzheimers disease (AD), these cholinergic neurons degenerate, therefore selectively activating M1 receptors could improve cognitive function in these patients while avoiding unwanted peripheral responses associated with non-selective muscarinic agonists. We describe here benzyl quinolone carboxylic acid (BQCA), a highly selective allosteric potentiator of the M1 mAChR. BQCA reduces the concentration of ACh required to activate M1 up to 129-fold with an inflection point value of 845 nM. No potentiation, agonism, or antagonism activity on other mAChRs is observed up to 100 μM. Furthermore studies in M1−/− mice demonstrates that BQCA requires M1 to promote inositol phosphate turnover in primary neurons and to increase c-fos and arc RNA expression and ERK phosphorylation in the brain. Radioligand-binding assays, molecular modeling, and site-directed mutagenesis experiments indicate that BQCA acts at an allosteric site involving residues Y179 and W400. BQCA reverses scopolamine-induced memory deficits in contextual fear conditioning, increases blood flow to the cerebral cortex, and increases wakefulness while reducing delta sleep. In contrast to M1 allosteric agonists, which do not improve memory in scopolamine-challenged mice in contextual fear conditioning, BQCA induces β-arrestin recruitment to M1, suggesting a role for this signal transduction mechanism in the cholinergic modulation of memory. In summary, BQCA exploits an allosteric potentiation mechanism to provide selectivity for the M1 receptor and represents a promising therapeutic strategy for cognitive disorders.


Current Topics in Medicinal Chemistry | 2006

Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia.

Craig W. Lindsley; William D. Shipe; Scott E. Wolkenberg; Cory R. Theberge; David L. Williams; Cyrille Sur; Gene G. Kinney

This article describes recent progress towards validation of the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia in preclinical models. Schizophrenia, a complex disease characterized by positive, negative and cognitive symptoms, affects 1% of the world population and requires lifelong, daily maintenance therapy. For the last several decades, thinking in this field has been dominated by the hypothesis that hyperfunction of dopamine pathways played a key role in schizophrenia. However, the therapeutic agents developed from this hypothesis have a slow onset of action and tend to improve only the positive symptoms of the disease. The NMDA receptor antagonist PCP has been shown to induce the positive, negative and cognitive symptoms of schizophrenia in healthy patients and cause a resurgence of symptoms in stable patients. These observations led to the NMDA receptor hypofunction hypothesis as an alternative theory for the underlying cause of schizophrenia. According to this hypothesis, any agent that can potentiate NMDA receptor currents has the potential to ameliorate the symptoms of schizophrenia. To date, NMDA receptor currents can be modulated by either direct action on modulatory sites on the NMDA receptor (i.e., the glycine co-agonist binding site) or indirectly by activation of G-protein coupled receptors (GPCRs) known to potentiate NMDA receptor function (i.e., mGluR5). This review will discuss the NMDA receptor hypofunction hypothesis, the NMDA receptor as an emerging target for the development of novel antipsychotic agents and progress towards in vivo target validation with GlyT1 inhibitors and mGluR5 positive allosteric modulators. Other potential targets for modulating NMDA receptor currents (polyamine sites, muscarinic receptors, etc...) will also be addressed briefly.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, and Evaluation of a Novel 4-Aminomethyl-4-fluoropiperidine as a T-Type Ca2+ Channel Antagonist

William D. Shipe; James C. Barrow; Zhi Qiang Yang; Craig W. Lindsley; F. Vivien Yang; Kelly Ann S. Schlegel; Youheng Shu; Kenneth E. Rittle; Mark G. Bock; George D. Hartman; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Emily D. Adarayan; Thomayant Prueksaritanont; Matthew M. Zrada; Victor N. Uebele; Cindy E. Nuss; Thomas M. Connolly; Scott M. Doran; Steven V. Fox; Richard L. Kraus; Michael J. Marino; Valerie Kuzmick Graufelds; Hugo M. Vargas; Patricia B. Bunting; Martha Hasbun-Manning; Rose M. Evans; Kenneth S. Koblan; John J. Renger

The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.


Journal of Medicinal Chemistry | 2008

Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels

Zhi-Qiang Yang; James C. Barrow; William D. Shipe; Kelly-Ann S. Schlegel; Youheng Shu; F. Vivien Yang; Craig W. Lindsley; Kenneth E. Rittle; Mark G. Bock; George D. Hartman; Victor N. Uebele; Cindy E. Nuss; Steve V. Fox; Richard L. Kraus; Scott M. Doran; Thomas M. Connolly; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Emily D. Adarayan; Thomayant Prueksaritanont; Matthew M. Zrada; Michael J. Marino; Valerie Kuzmick Graufelds; Anthony G. DiLella; Ian J. Reynolds; Hugo M. Vargas; Patricia B. Bunting; Richard Woltmann; Michael Magee

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinsons disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.


Drug Discovery Today: Technologies | 2005

Accelerating lead development by microwave-enhanced medicinal chemistry

William D. Shipe; Scott E. Wolkenberg; Craig W. Lindsley

Microwave-assisted organic synthesis (MAOS) addresses the need for accelerated chemical synthesis by providing many advantages over classical thermal conditions. Microwave instruments produced by Biotage, CEM and Milestone enable chemistry to be safely and reproducibly performed on various scales and in a parallel fashion. To illustrate the high utility of this technology for lead development, our Akt kinase program will be described wherein MAOS played a pivotal role in the identification of isozyme-selective Akt inhibitors.:


Bioorganic & Medicinal Chemistry Letters | 2010

Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators

Feng V. Yang; William D. Shipe; Jaime Lynn Bunda; M. Brad Nolt; David D. Wisnoski; Zhijian Zhao; James C. Barrow; William J. Ray; Lei Ma; Marion Wittmann; Matthew A. Seager; Kenneth A. Koeplinger; George D. Hartman; Craig W. Lindsley

An iterative analog library synthesis approach was employed in the exploration of a quinolone carboxylic acid series of selective M(1) positive allosteric modulators, and strategies for improving potency and plasma free fraction were identified.


Heterocycles | 2006

Convenient and General Microwave-Assisted Protocols for the Expedient Synthesis of Heterocycles

William D. Shipe; Feng Yang; Zhijian Zhao; Scott E. Wolkenberg; M. Brad Nolt; Craig W. Lindsley

We have developed convenient and general MAOS protocols for the synthesis of functionalized 1,2,4-triazines, canthines, imidazoles, quinoxalines, pyrazines, quinoxalinones, and 5-aminooxazoles. The methodology described herein makes use of readily available building blocks, facilitating the generation of structurally diverse analog libraries to support nascent medicinal chemistry programs. Other advantages over classical heating conditions include shortened reaction times, increased yields, and the suppression of side product formation.


Journal of Medicinal Chemistry | 2015

Discovery and Optimization of a Series of Pyrimidine-Based Phosphodiesterase 10A (PDE10A) Inhibitors through Fragment Screening, Structure-Based Design, and Parallel Synthesis

William D. Shipe; Steven S. Sharik; James C. Barrow; Georgia B. McGaughey; Cory R. Theberge; Jason M. Uslaner; Youwei Yan; John J. Renger; Sean M. Smith; Paul J. Coleman; Christopher D. Cox

Screening of a fragment library for PDE10A inhibitors identified a low molecular weight pyrimidine hit with PDE10A Ki of 8700 nM and LE of 0.59. Initial optimization by catalog followed by iterative parallel synthesis guided by X-ray cocrystal structures resulted in rapid potency improvements with minimal loss of ligand efficiency. Compound 15 h, with PDE10A Ki of 8.2 pM, LE of 0.49, and >5000-fold selectivity over other PDEs, fully attenuates MK-801-induced hyperlocomotor activity after ip dosing.


ACS Medicinal Chemistry Letters | 2016

Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

Christopher James Bungard; Peter D. Williams; Jeanine Ballard; David Jonathan Bennett; Christian Beaulieu; Carolyn Bahnck-Teets; Steve Carroll; Ronald K. Chang; David C. Dubost; John F. Fay; Tracy L. Diamond; Thomas J. Greshock; Li Hao; M. Katharine Holloway; Peter J. Felock; Jennifer J. Gesell; Hua-Poo Su; Jesse J. Manikowski; Daniel J. McKay; Mike Miller; Xu Min; Carmela Molinaro; Oscar M. Moradei; Philippe G. Nantermet; Christian Nadeau; Rosa I. Sanchez; Tummanapalli Satyanarayana; William D. Shipe; Sanjay K. Singh; Vouy Linh Truong

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of pyrazolopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia.

Izzat T. Raheem; John D. Schreier; Joy Fuerst; Liza Gantert; Eric Hostetler; Sarah L. Huszar; Aniket D. Joshi; Monika Kandebo; Somang H. Kim; Jing Li; Bennett Ma; Georgia B. McGaughey; Sujata Sharma; William D. Shipe; Jason M. Uslaner; George H. Vandeveer; Youwei Yan; John J. Renger; Sean M. Smith; Paul J. Coleman; Christopher D. Cox

Herein, we present the identification of a novel class of pyrazolopyrimidine phosphodiesterase 10A (PDE10A) inhibitors. Beginning with a lead molecule (1) identified through a fragment-based drug discovery (FBDD) effort, lead optimization was enabled by rational design, X-ray crystallography, metabolic and off-target profiling, and fragment scaffold-hopping. We highlight the discovery of PyP-1, a potent, highly selective, and orally bioavailable pyrazolopyrimidine inhibitor of PDE10A. PyP-1 exhibits sub-nanomolar potency (PDE10A Ki=0.23nM), excellent pharmacokinetic (PK) and physicochemical properties, and a clean off-target profile. It displays dose-dependent efficacy in numerous pharmacodynamic (PD) assays that measure potential for anti-psychotic activity and cognitive improvement. PyP-1 also has a clean preclinical profile with respect to cataleptic potential in rats, prolactin secretion, and weight gain, common adverse events associated with currently marketed therapeutics. Further, PyP-1 displays in vivo preclinical target engagement as measured by PET enzyme occupancy in concert with [(11)C]MK-8193, a novel PDE10A PET tracer.

Collaboration


Dive into the William D. Shipe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Cox

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Jaime Lynn Bunda

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Lei Ma

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Marion Wittmann

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge