Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Dowhan is active.

Publication


Featured researches published by William Dowhan.


Journal of Bacteriology | 2000

Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange.

Eugenia Mileykovskaya; William Dowhan

Cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) was used to visualize CL distribution in Escherichia coli cells of different phospholipid compositions. In a filamentous mutant containing only anionic phospholipids, green fluorescent spots were observed along the filaments at approximately regular intervals. Three-dimensional image reconstruction obtained by optical sectioning and a deconvolution algorithm revealed NAO-binding domains in the plane of the cell membrane. Substantial red fluorescence emission of bound NAO supported labeling of CL-containing domains. These structures were not found in mutants deficient in CL biosynthesis. The domains were also observed mostly in the septal region and on the poles in cells of normal size with wild-type phospholipid composition.


Cell | 1991

Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein.

Ann E. Cleves; Todd P. McGee; Eric A. Whitters; Kathleen M. Champlon; Jacqueline R. Altken; William Dowhan; Mark G. Goebl; Vytas A. Bankaitis

SEC14p is the yeast phosphatidylinositol (PI)/phosphatidylcholine (PC) transfer protein, and it effects an essential stimulation of yeast Golgi secretory function. We now report that the SEC14p localizes to the yeast Golgi and that the SEC14p requirement can be specifically and efficiently bypassed by mutations in any one of at least six genes. One of these suppressor genes was the structural gene for yeast choline kinase (CKI), disruption of which rendered the cell independent of the normally essential SEC14p requirement. The antagonistic action of the CKI gene product on SEC14p function revealed a previously unsuspected influence of biosynthetic activities of the CDP-choline pathway for PC biosynthesis on yeast Golgi function and indicated that SEC14p controls the phospholipid content of yeast Golgi membranes in vivo.


Journal of Biological Chemistry | 2005

Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria

Mei Zhang; Eugenia Mileykovskaya; William Dowhan

Digitonin extracts of mitochondria from cardiolipin-containing (wild type) and cardiolipin-lacking (crd1Δ mutant) Saccharomyces cerevisiae subjected to colorless native polyacrylamide gel electrophoresis in the presence of 0.003% digitonin displayed a supercomplex composed of homodimers of complexes III and IV in the former case but only the individual homodimers in the latter case. To avoid treatment with any detergent or dye, we compared organization of the respiratory chain in intact mitochondria from wild type and cardiolipin-lacking cells by using a functional analysis developed previously for the study of the organization of the respiratory chain of S. cerevisiae (Boumans, H., Grivell, L. A., and Berden, J. A. (1998) J. Biol. Chem. 273, 4872–4877). Dependence of the kinetics of NADH oxidation via complexes III, IV, and cytochrome c on the concentration of the complex III-specific inhibitor antimycin A was studied. A linear relationship between respiratory activity and saturation of complex III with antimycin A was obtained for wild type mitochondria consistent with single functional unit kinetics of the respiratory chain. Under the same conditions, cardiolipin-lacking mitochondria displayed a hyperbolic relationship indicating cytochrome c pool behavior. No release of cytochrome c from cardiolipin-lacking mitochondria or mitoplasts under our standard experimental conditions was detected. Identical cytochrome c pool behavior was observed for both wild type and cardiolipin-lacking mitochondria in the presence of a chaotropic agent, which disrupts the interaction between respiratory complexes. The results demonstrate that cardiolipin is essential for association of complexes III and IV into a supercomplex in intact yeast mitochondria.


Biochimica et Biophysica Acta | 2002

Cardiolipin and apoptosis

Jeanie B. McMillin; William Dowhan

Cardiolipin (CL) is recognized to be an essential phospholipid in eukaryotic energy metabolism so that physiological and pathological perturbations in its synthetic and catabolic pathways play key roles in maintaining mitochondrial structure and function, and ultimately cell survival. This review describes potential regulatory mechanisms in CL synthesis and the effects of de-acylation pathways on steady state levels of CL and its interaction with cytochrome c. The latter interaction is significant in the initiation of programmed cell death. Physiological factors that modify CL acylation include ageing, dietary influences and ischemia/reperfusion where the terminal events may be either necrosis or apoptosis. In various pathologies, phospholipase activity increases in response to production of peroxidized CL. The cell may use lysosomal or mitochondrial pathways for CL degradation. However, the manner by which CL and cytochrome c leave the mitochondria is not well understood. The lipid (CL)-bound form of cytochrome c is thought to initiate apoptosis via a lipid transfer step involving mitochondrially targeted Bid. A direct relationship between CL loss and cytochrome c release from the mitochondria has been identified as an initial step in the pathway to apoptosis. An absolute requirement for CL in the function of crucial mitochondrial proteins, e.g., cytochrome oxidase and the adenine nucleotide translocase, are likely additional factors impacting apoptosis and cellular energy homeostasis. This is reflected in the occurrence of both oncotic and apoptotic events in ischemia and reperfusion injury. Other potential clinical manifestations of perturbations of CL synthesis are discussed with particular emphasis on Barth Syndrome where a primary defect can be attributed to CL metabolism and is associated with dilated cardiomyopathy. Finally, the model of fatty acid induced apoptosis is used as a paradigm to our understanding of the temporal relationship between decreased mitochondrial CL, release of cytochrome c, and initiation of apoptosis.


Biochimica et Biophysica Acta | 2009

Cardiolipin membrane domains in prokaryotes and eukaryotes.

Eugenia Mileykovskaya; William Dowhan

Cardiolipin (CL) plays a key role in dynamic organization of bacterial and mitochondrial membranes. CL forms membrane domains in bacterial cells, and these domains appear to participate in binding and functional regulation of multi-protein complexes involved in diverse cellular functions including cell division, energy metabolism, and membrane transport. Visualization of CL domains in bacterial cells by the fluorescent dye 10-N-nonyl acridine orange is critically reviewed. Possible mechanisms proposed for CL dynamic localization in bacterial cells are discussed. In the mitochondrial membrane CL is involved in organization of multi-subunit oxidative phosphorylation complexes and in their association into higher order supercomplexes. Evidence suggesting a possible role for CL in concert with ATP synthase oligomers in establishing mitochondrial cristae morphology is presented. Hypotheses on CL-dependent dynamic re-organization of the respiratory chain in response to changes in metabolic states and CL dynamic re-localization in mitochondria during the apoptotic response are briefly addressed.


Annual Review of Biochemistry | 2009

Lipid-Dependent Membrane Protein Topogenesis

William Dowhan; Mikhail Bogdanov

The topology of polytopic membrane proteins is determined by topogenic sequences in the protein, protein-translocon interactions, and interactions during folding within the protein and between the protein and the lipid environment. Orientation of transmembrane domains is dependent on membrane phospholipid composition during initial assembly as well as on changes in lipid composition postassembly. The membrane translocation potential of negative amino acids working in opposition to the positive-inside rule is largely dampened by the normal presence of phosphatidylethanolamine, thus explaining the dominance of positive residues as retention signals. Phosphatidylethanolamine provides the appropriate charge density that permits the membrane surface to maintain a charge balance between membrane translocation and retention signals and also allows the presence of negative residues in the cytoplasmic face of proteins for other purposes.


The EMBO Journal | 2002

A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition

Mikhail Bogdanov; Phillip N. Heacock; William Dowhan

To address the role of phospholipids in the topological organization of polytopic membrane proteins, the function and assembly of lactose permease (LacY) was studied in mutants of Escherichia coli lacking phosphatidylethanolamine (PE). PE is required for the proper conformation and active transport function of LacY. The N‐terminal half of LacY assembled in PE‐lacking cells adopts an inverted topology in which normally non‐translocated domains are translocated and vice versa. Post‐assembly synthesis of PE triggers a conformational change, resulting in a lipid‐dependent recovery of normal conformation and topology of at least one LacY subdomain accompanied by restoration of active transport. These results demonstrate that membrane protein topology once attained can be changed in a reversible manner in response to alterations in phospholipid composition, and may be subject to post‐assembly proofreading to correct misfolded structures.


Journal of Biological Chemistry | 1999

Lipid-assisted Protein Folding

Mikhail Bogdanov; William Dowhan

Although there has been significant progress in our understand-ing of how water-soluble proteins fold (1, 2), the factors and mech-anism driving correct folding of integral membrane proteins arelargely unknown. The folding of membrane proteins, like theirsoluble counterparts, is dictated by their amino acid sequence andtheir environment (Fig. 1). Integral membrane proteins can alsointeract with other proteins within the membrane and with thehydrophobic and hydrophilic components of the lipid bilayer itselfduring and after attainment of native structure. The role of lipidsas an important structure-forming environment was elucidatedduring the last decade (3). However, the role individual lipids playas part of the protein folding machinery has been largely ignored.Are individual lipids mobilized to protect and guide the nascentpolypeptide chain during its membrane assembly? Do lipids act asspecific molecular chaperones or transient ligands during the as-sembly of a membrane protein?


Journal of Biological Chemistry | 1998

Isolation and Characterization of the Gene (CLS1) Encoding Cardiolipin Synthase in Saccharomyces cerevisiae

Shao Chun Chang; Philip Heacock; Eugenia Mileykovskaya; Dennis R. Voelker; William Dowhan

In eukaryotic cells, cardiolipin (CL) synthase catalyzes the final step in the synthesis of CL from phosphatidylglycerol and CDP-diacylglycerol. CL and its synthesis are localized predominantly to the mitochondrial inner membrane, and CL is generally thought to be an essential component of many mitochondrial processes. By using homology searches for genes potentially encoding phospholipid biosynthetic enzymes, we have cloned the gene (CLS1) encoding CL synthase in Saccharomyces cerevisiae. Overexpression of the CLS1 gene under its endogenous promoter or the inducible GAL1 promoter in yeast and expression of CLS1 in baculovirus-infected insect cells resulted in elevated CL synthase activity. Disruption of theCLS1 gene in a haploid yeast strain resulted in the loss of CL synthase activity, no detectable CL, a 5-fold elevation in phosphatidylglycerol levels, and lack of staining of mitochondria by a dye with high affinity for CL. Thecls1::TRP1 null mutant grew on both fermentable and non-fermentable carbon sources but more poorly on the latter. The level and activity of cytochrome c oxidase was normal, and a dye whose accumulation is dependent on membrane proton electrochemical potential effectively stained the mitochondria. These results definitively identify the gene encoding the CL synthase of yeast.


Journal of Biological Chemistry | 1996

A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein

Mikhail Bogdanov; Jianzhong Sun; H. Ronald Kaback; William Dowhan

A mutant of Escherichia coli lacking phosphatidylethanolamine (PE) and a monoclonal antibody (mAb 4B1) directed against a conformationally sensitive epitope (4B1) of lactose permease were used to establish a novel role for a phospholipid in the assembly of a membrane protein. Epitope 4B1 is readily detectable in spheroplasts and right-side-out membrane vesicles from PE-containing but not from PE-deficient cells expressing lactose permease. Lactose permease from PE-containing membranes, but not from PE-deficient membranes, subjected to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and Western blot analysis is also recognized by mAb 4B1. If total E. coli phospholipids or PE (but not phosphatidylcholine, phosphatidylglycerol, or cardiolipin) are blotted on nitrocellulose sheets (Eastern blot) prior to transfer of proteins from SDS-polyacrylamide gels, the permease from PE-deficient cells regains its recognition by mAb 4B1. Therefore, PE is required during assembly to form epitope 4B1, but, once formed, sufficient “conformational memory” is retained in the permease to either retain or reform this epitope in the absence of PE. Lactose permease lacking epitope 4B1 can be induced to form the epitope if partially denatured and then renatured in the presence of PE specifically. These results establish for the first time a role for PE as a molecular chaperone in the assembly of the lactose permease.

Collaboration


Dive into the William Dowhan's collaboration.

Researchain Logo
Decentralizing Knowledge