Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William E. Burgan is active.

Publication


Featured researches published by William E. Burgan.


Cancer Research | 2004

Enhanced Radiation-Induced Cell Killing and Prolongation of γH2AX Foci Expression by the Histone Deacetylase Inhibitor MS-275

Kevin Camphausen; William E. Burgan; Michael A. Cerra; Kelli A. Oswald; Jane B. Trepel; Min-Jung Lee; Philip J. Tofilon

Histone deacetylase (HDAC) inhibitors are undergoing clinical evaluation for cancer therapy. Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we have investigated the effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 prostate carcinoma and U251 glioma). Acetylation status of histones H3 and H4 was determined as a function of time after MS-275 addition to and removal from culture medium. Histone acetylation increased by 6 h after MS-275 addition, reaching a maximum between 24 and 48 h of exposure; providing fresh drug-free medium then resulted in a decrease in histone acetylation that began by 6 h and approached untreated levels by 16 h. Treatment of cells with MS-275 for 48 h followed by irradiation had little or no effect on radiation-induced cell death. However, exposure to MS-275 before and after irradiation resulted in an increase in radiosensitivity with dose enhancement factors of 1.9 and 1.3 for DU145 and U251 cells, respectively. This MS-275 treatment protocol did not result in a redistribution of the cells into a more radiosensitive phase of the cell cycle or in an increase in apoptosis. However, MS-275 did modify the time course of γH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced γH2AX foci at 6 h, the number of cells expressing γH2AX foci was significantly greater in the MS-275-treated cells at 24 h after irradiation. These results indicate that MS-275 can enhance radiosensitivity and suggest that this effect may involve an inhibition of DNA repair.


International Journal of Cancer | 2005

Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid

Kevin Camphausen; David Cerna; Tamalee Scott; Mary Sproull; William E. Burgan; Michael A. Cerra; Howard A. Fine; Philip J. Tofilon

Valproic acid (VA) is a well‐tolerated drug used to treat seizure disorders and has recently been shown to inhibit histone deacetylase (HDAC). Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we investigated the effects of VA on the radiosensitivity of human brain tumor cells grown in vitro and in vivo. The human brain tumor cell lines SF539 and U251 were used in our study. Histone hyperacetylation served as an indicator of HDAC inhibition. The effects of VA on tumor cell radiosensitivity in vitro were assessed using a clonogenic survival assay and γH2AX expression was determined as a measure of radiation‐induced DNA double strand breaks. The effect of VA on the in vivo radioresponse of brain tumor cells was evaluated according to tumor growth delay analysis carried out on U251 xenografts. Irradiation at the time of maximum VA‐induced histone hyperacetylation resulted in significant increases in the radiosensitivity of both SF539 and U251 cells. The radiosensitization was accompanied by a prolonged expression of γH2AX. VA administration to mice resulted in a clearly detectable level of histone hyperacetylation in U251 xenografts. Irradiation of U251 tumors in mice treated with VA resulted in an increase in radiation‐induced tumor growth delay. Valproic acid enhanced the radiosensitivity of both SF539 and U251 cell lines in vitro and U251 xenografts in vivo, which correlated with the induction of histone hyperacetylation. Moreover, the VA‐mediated increase in radiation‐induced cell killing seemed to involve the inhibition of DNA DSB repair.


Clinical Cancer Research | 2009

In vitro and In vivo Radiosensitization of Glioblastoma Cells by the Poly (ADP-Ribose) Polymerase Inhibitor E7016

Andrea L. Russo; Hyuk-Chan Kwon; William E. Burgan; Donna Carter; Katie Beam; Xu Weizheng; Jie Zhang; Barbara S. Slusher; Arnab Chakravarti; Philip J. Tofilon; Kevin Camphausen

Purpose: Poly (ADP-ribose) polymerase (PARP) inhibitors are undergoing clinical evaluation for cancer therapy. Because PARP inhibition has been shown to enhance tumor cell sensitivity to radiation, we investigated the in vitro and in vivo effects of the novel PARP inhibitor E7016. Experimental Design: The effect of E7016 on the in vitro radiosensitivity of tumor cell lines was evaluated using clonogenic survival. DNA damage and repair were measured using γH2AX foci and neutral comet assay. Mitotic catastrophe was determined by immunostaining. Tumor growth delay was evaluated in mice for the effect of E7016 on in vivo (U251) tumor radiosensitivity. Results: Cell lines exposed to E7016 preirradiation yielded an increase in radiosensitivity with dose enhancement factors at a surviving fraction of 0.1 from 1.4 to 1.7. To assess DNA double-strand breaks repair, γH2AX measured at 24 hours postirradiation had significantly more foci per cell in the E7016/irradiation group versus irradiation alone. Neutral comet assay further suggested unrepaired double-strand breaks with significantly greater DNA damage at 6 hours postirradiation in the combination group versus irradiation alone. Mitotic catastrophe staining revealed a significantly greater number of cells staining positive at 24 hours postirradiation in the combination group. In vivo, mice treated with E7016/irradiation/temozolomide had an additional growth delay of six days compared with the combination of temozolomide and irradiation. Conclusions: These results indicate that E7016 can enhance tumor cell radiosensitivity in vitro and in vivo through the inhibition of DNA repair. Moreover, enhanced growth delay with the addition of E7016 to temozolomide and radiotherapy in a glioma mouse model suggests a potential role for this drug in the treatment of glioblastoma multiforme.


Cancer Research | 2006

Inhibition of Hsp90 Compromises the DNA Damage Response to Radiation

Hideaki Dote; William E. Burgan; Kevin Camphausen; Philip J. Tofilon

Inhibitors of the molecular chaperone Hsp90 have been shown to enhance tumor cell radiosensitivity. To begin to address the mechanism responsible, we have determined the effect of the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17DMAG) on the DNA damage response to radiation. Exposure of MiaPaCa tumor cells to 17DMAG, which results in radiosensitization, inhibited the repair of DNA double-strand breaks according to gammaH2AX foci dispersal and the neutral comet assay. This repair inhibition was associated with reduced DNA-PK catalytic subunit (DNA-PKcs) phosphorylation after irradiation and a disruption of DNA-PKcs/ErbB1 interaction. These data suggest that the previously established 17DMAG-mediated reduction in ErbB1 activity reduces its interaction with DNA-PKcs and thus accounts for the attenuation of radiation-induced DNA-PK activation. 17DMAG was also found to abrogate the activation of the G(2)- and S-phase cell cycle checkpoints. Associated with these events was a reduction in radiation-induced ataxia-telangiectasia mutated (ATM) activation and foci formation in 17DMAG-treated cells. Although no interaction between ATM and Hsp90 was detected, Hsp90 was found to interact with the MRE11/Rad50/NBS1 (MRN) complex. 17DMAG exposure reduced the ability of the MRN components to form nuclear foci after irradiation. Moreover, 17DMAG exposure reduced the interaction between NBS1 and ATM, although no degradation of the MRN complex was detected. These results suggest that the diminished radiation-induced activation of ATM in 17DMAG-treated cells was the result of a compromise in the function of the MRN complex. These data indicate that Hsp90 can contribute to the DNA damage response to radiation affecting both DNA repair and cell cycle checkpoint activation.


Clinical Cancer Research | 2004

Enhanced Tumor Cell Radiosensitivity and Abrogation of G2 and S Phase Arrest by the Hsp90 Inhibitor 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin

Elizabeth E.A. Bull; Hideaki Dote; Kristin J. Brady; William E. Burgan; Donna Carter; Michael A. Cerra; Kelli A. Oswald; Melinda G. Hollingshead; Kevin Camphausen; Philip J. Tofilon

Purpose: Because of the potential for affecting multiple signaling pathways, inhibition of Hsp90 may provide a strategy for enhancing tumor cell radiosensitivity. Therefore, we have investigated the effects of the orally bioavailable Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) on the radiosensitivity of human tumor cells in vitro and grown as tumor xenografts. Experimental Design: The effect of 17-DMAG on the levels of three proteins (Raf-1, ErbB2, and Akt) previously implicated in the regulation of radiosensitivity was determined in three human solid tumor cell lines. A clonogenic assay was then used to evaluate cell survival after exposure to 17-DMAG followed by irradiation. For mechanistic insight, the G2- and S-phase checkpoints were evaluated in 17-DMAG–treated cells. Finally, the effect of in vivo administration of 17-DMAG in combination with radiation on the growth rate of xenograft tumors was determined. Results: 17-DMAG exposure reduced the levels of the three radiosensitivity-associated proteins in a cell line-specific manner with ErbB2 being the most susceptible. Corresponding concentrations of 17-DMAG enhanced the radiosensitivity of each of the tumor cell lines. This sensitization seemed to be the result of a 17-DMAG–mediated abrogation of the G2- and S-phase cell cycle checkpoints. The oral administration of 17-DMAG to mice bearing tumor xenografts followed by irradiation resulted in a greater than additive increase in tumor growth delay. Conclusions: These data indicate that 17-DMAG enhances the in vitro and in vivo radiosensitivity of human tumor cells. The mechanism responsible seems to involve the abrogation of radiation-induced G2- and S-phase arrest.


Clinical Cancer Research | 2008

In vitro and In vivo Radiosensitization Induced by the DNA Methylating Agent Temozolomide

Whoon Jong Kil; David Cerna; William E. Burgan; Katie Beam; Donna Carter; Patricia S. Steeg; Philip J. Tofilon; Kevin Camphausen

Purpose: Temozolomide, a DNA methylating agent, is currently undergoing clinical evaluation for cancer therapy. Because temozolomide has been shown to increase survival rates of patients with malignant gliomas when given combined with radiation, and there is conflicting preclinical data concerning the radiosensitizing effects of temozolomide, we further investigated the possible temozolomide-induced enhancement of radiosensitivity. Experimental Design: The effects of temozolomide on the in vitro radiosensitivity of U251 (a human glioma) and MDA-MB231BR (a brain-seeking variant of a human breast tumor) cell lines was evaluated using clonogenic assay. DNA damage and repair were evaluated using phosphorylated histone H2AX (γH2AX), and mitotic catastrophe was measured using nuclear fragmentation. Growth delay was used to evaluate the effects of temozolomide on in vivo (U251) tumor radiosensitivity. Results: Exposure of each cell line to temozolomide for 1 h before irradiation resulted in an increase in radiosensitivity with dose enhancement factors at a surviving fraction of 0.1 ranging from 1.30 to 1.32. Temozolomide had no effect on radiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. As a measure of DNA double strand breaks, γH2AX foci were determined as a function of time after the temozolomide + irradiation combination. The number of γH2AX foci per cell was significantly greater at 24 h after the combined modality compared with the individual treatments. Mitotic catastrophe, measured at 72 h, was also significantly increased in cells receiving the temozolomide + irradiation combination compared with the single treatments. In vivo studies revealed that temozolomide administration to mice bearing U251 tumor xenografts resulted in a greater than additive increase in radiation-induced tumor growth delay with a dose enhancement factor of 2.8. Conclusions: These results indicate that temozolomide can enhance tumor cell radiosensitivity in vitro and in vivo and suggest that this effect involves an inhibition of DNA repair leading to an increase in mitotic catastrophe.


Clinical Cancer Research | 2005

Enhancement of In vitro and In vivo Tumor Cell Radiosensitivity by the DNA Methylation Inhibitor Zebularine

Hideaki Dote; David Cerna; William E. Burgan; Donna Carter; Michael A. Cerra; Melinda G. Hollingshead; Kevin Camphausen; Philip J. Tofilon

Aberrant DNA hypermethylation is a frequent finding in tumor cells, which has suggested that inhibition of DNA methylation may be an effective cancer treatment strategy. Because DNA methylation affects gene expression and chromatin structure, parameters considered to influence radioresponse, we investigated the effects of the DNA methylation inhibitor zebularine on the radiosensitivity of human tumor cells. Three human tumor cell lines were used in this study (MiaPaCa, DU145, and U251) and the methylation status of three genes frequently hypermethylated in tumor cells (RASSF1A, HIC-1, and 14-3-3σ) was determined as a function of zebularine exposure. Zebularine resulted in DNA demethylation in a time-dependent manner, with the maximum loss of methylation detected by 48 hours. Treatment of cells with zebularine for 48 hours also resulted in an increase in radiosensitivity with dose enhancement factors of >1.5. As a measure of radiation-induced DNA damage, γH2AX expression was determined. Whereas zebularine had no effect on radiation-induced γH2AX foci at 1 hour, the number of γH2AX foci per cell was significantly greater in the zebularine-treated cells at 24 hours after irradiation, suggesting the presence of unrepaired DNA damage. Zebularine administration to mice reactivated gene expression in U251 xenografts; irradiation of U251 tumors in mice treated with zebularine resulted in an increase in radiation-induced tumor growth delay. These results indicate that zebularine can enhance tumor cell radiosensitivity in vitro and in vivo and suggest that this effect may involve an inhibition of DNA repair.


Clinical Cancer Research | 2008

Postradiation Sensitization of the Histone Deacetylase Inhibitor Valproic Acid

Prakash Chinnaiyan; David Cerna; William E. Burgan; Katie Beam; Eli S. Williams; Kevin Camphausen; Philip J. Tofilon

Purpose: Preclinical studies evaluating histone deacetylase (HDAC) inhibitor-induced radiosensitization have largely focused on the preirradiation setting based on the assumption that enhanced radiosensitivity was mediated by changes in gene expression. Our previous investigations identified maximal radiosensitization when cells were exposed to HDAC inhibitors in both the preradiation and postradiation setting. We now expand on these studies to determine whether postirradiation exposure alone affects radiosensitivity. Experimental Design: The effects of the HDAC inhibitor valproic acid (VA) on postirradiation sensitivity in human glioma cell lines were evaluated using a clonogenic assay, exposing cells to VA up to 24 h after irradiation. DNA damage repair was evaluated using γH2AX and 53BP1 foci and cell cycle phase distribution was analyzed by flow cytometry. Western blot of acetylated γH2AX was done following histone extraction on AUT gels. Results: VA enhanced radiosensitivity when delivered up to 24 h after irradiation. Cells accumulated in G2-M following irradiation, although they returned to baseline at 24 h, mitigating the role of cell cycle redistribution in postirradiation sensitization by VA. At 12 h after irradiation, significant γH2AX and 53BP1 foci dispersal was shown in the control, although cells exposed to VA after irradiation maintained foci expression. VA alone had no effect on the acetylation or phosphorylation of H2AX, although it did acetylate radiation-induced γH2AX. Conclusions: These results indicate that VA enhances radiosensitivity at times up to 24 h after irradiation, which has direct clinical application.


Clinical Cancer Research | 2009

In vitro and In vivo Radiosensitization with AZD6244 (ARRY-142886), an Inhibitor of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase 1/2 Kinase

Eun Joo Chung; Aaron P. Brown; Hiroaki Asano; Mariana Mandler; William E. Burgan; Donna Carter; Kevin Camphausen; Deborah Citrin

Purpose: The mitogen-activated protein (MAP) kinase pathway is important for cell proliferation, survival, and differentiation, and is frequently up-regulated in cancers. The MAP kinase pathway is also activated after exposure to ionizing radiation. We investigated the effects of AZD6244 (ARRY-142886), an inhibitor of MAP kinase/extracellular signal-regulated kinase 1/2, on radiation response. Experimental Design: The effects of AZD6244 on the in vitro radiosensitivity of human cancer cell lines (A549, MiaPaCa2, and DU145) were evaluated using clonogenic assays. DNA damage repair was evaluated using γH2AX, and mitotic catastrophe was measured using nuclear fragmentation. Cell cycle effects were measured with flow cytometry. Growth delay was used to evaluate the effects of AZD6244 on in vivo tumor radiosensitivity. Results: Exposure of each cell line to AZD6244 before irradiation resulted in an increase in radiosensitivity with dose enhancement factors at a surviving fraction of 0.1, ranging from 1.16 to 2.0. No effects of AZD6244 on radiation-induced apoptosis or persistence of γH2AX foci after irradiation were detected. Cells treated with AZD6244 had an increased mitotic index and decreased Chk1 phosphorylation at 1 and 2 hours after irradiation. Mitotic catastrophe was increased in cells receiving AZD6244 and irradiation compared with the single treatments. In vivo studies revealed that AZD6244 administration to mice bearing A549 tumor xenografts resulted in a greater than additive increase in radiation-induced tumor growth delay (dose enhancement factor of 3.38). Conclusions: These results indicate that AZD6244 can enhance tumor cell radiosensitivity in vitro and in vivo and suggest that this effect involves an increase in mitotic catastrophe.


Molecular Cancer Therapeutics | 2009

Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts

A.M. Baschnagel; Andrea L. Russo; William E. Burgan; Donna Carter; Katie Beam; Diane Palmieri; Patricia S. Steeg; Philip J. Tofilon; Kevin Camphausen

Vorinostat (suberoylanilide hydroxamic acid), a histone deacetylase inhibitor, is currently undergoing clinical evaluation as therapy for cancer. We investigated the effects of vorinostat on tumor cell radiosensitivity in a breast cancer brain metastasis model using MDA-MB-231-BR cells. In vitro radiosensitivity was evaluated using clonogenic assay. Cell cycle distribution and apoptosis was measured using flow cytometry. DNA damage and repair was evaluated using γH2AX. Mitotic catastrophe was measured by immunostaining. Growth delay and intracranial xenograft models were used to evaluate the in vivo tumor radiosensitivity. Cells exposed to vorinostat for 16 hours before and maintained in the medium after irradiation had an increase in radiosensitivity with a dose enhancement factor of 1.57. γH2AX, as an indicator of double-strand breaks, had significantly more foci per cell in the vorinostat plus irradiation group. Mitotic catastrophe, measured at 72 hours, was significantly increased in cells receiving vorinostat plus irradiation. Irradiation of s.c. MDA-MB-231-BR tumors in mice treated with vorinostat resulted in an increase in radiation-induced tumor growth delay. Most importantly, animals with intracranial tumor implants lived the longest after combination treatment. These results indicate that vorinostat enhances tumor cell radiosensitivity in vitro and in vivo. There was a greater than additive improvement in survival in our intracranial model. Combining vorinostat with radiation may be a potential treatment option for patients with breast cancer who develop brain metastases. [Mol Cancer Ther 2009;8(6):1589–95]

Collaboration


Dive into the William E. Burgan's collaboration.

Top Co-Authors

Avatar

Kevin Camphausen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Philip J. Tofilon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katie Beam

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Donna Carter

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

David Cerna

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Bagni

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge