William E. Finch-Savage
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William E. Finch-Savage.
The Plant Cell | 2009
Ada Linkies; Kerstin Müller; Karl Morris; Veronika Turečková; Meike Wenk; Cassandra S.C. Cadman; Françoise Corbineau; Miroslav Strnad; James R. Lynn; William E. Finch-Savage; Gerhard Leubner-Metzger
The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Steven Footitt; Isabel Douterelo-Soler; Heather A. Clay; William E. Finch-Savage
Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.
Biological Reviews | 2015
Rowena L. Long; Marta J. Gorecki; Michael Renton; John Scott; Louise Colville; Danica E. Goggin; Lucy E. Commander; David A. Westcott; Hillary Cherry; William E. Finch-Savage
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.
Seed Science Research | 1998
N. W. Pammenter; Valerie Greggains; Joseph I. Kioko; James Wesley-Smith; Patricia Berjak; William E. Finch-Savage
The drying rate of whole seeds of Ekebergia capensis (Meliaceae) was shown to influence the response to desiccation, with rapidly dried seeds surviving to lower water contents. Short-term rapid drying (to water contents higher than those leading to viability loss) actually increased the rate of germination. The form of the time course of decline of axis water content varied with drying rate; slow drying could be described by an exponential function, whereas with rapid drying initial water loss was faster than predicted by an exponential function. These observations suggest that slow drying brought about homogeneous dehydration and that the rapid drying was uneven across the tissue. This raised the possibility that the different responses to dehydration were a function of different distributions of water in the axis tissue under the two drying regimes. However, ultrastructural observations indicated that different deleterious processes may be occurring under the different drying treatments. It was tentatively concluded that a major cause of viability loss in slowly dried material was likely to be a consequence of aqueous-based processes leading to considerable membrane degradation. Uneven distribution of tissue water could not be rejected as a contributory cause of the survival of rapidly dried seeds to low bulk water contents. The differential response to dehydration at different drying rates implies that it is not possible to determine a ‘critical water content’ for viability loss by recalcitrant seeds.
Plant Journal | 2013
Steven Footitt; Ziyue Huang; Heather A. Clay; A. Mead; William E. Finch-Savage
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds of Arabidopsis ecotypes with contrasting life cycles over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine the dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed-specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION 1 (DOG1) that indicates the correct season, and concurrent temporally driven co-opted mechanisms that sense spatial signals, i.e. nitrate, via CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1), and light, via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA-HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, the expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes, indicating a role in determining their different dormancy cycling phenotypes.
Plant Physiology | 2011
Karl Morris; Ada Linkies; Kerstin Müller; Krystyna Oracz; Xiaofeng Wang; James R. Lynn; Gerhard Leubner-Metzger; William E. Finch-Savage
The completion of germination in Lepidium sativum and other endospermic seeds (e.g. Arabidopsis [Arabidopsis thaliana]) is regulated by two opposing forces, the growth potential of the radicle (RAD) and the resistance to this growth from the micropylar endosperm cap (CAP) surrounding it. We show by puncture force measurement that the CAP progressively weakens during germination, and we have conducted a time-course transcript analysis of RAD and CAP tissues throughout this process. We have also used specific inhibitors to investigate the importance of transcription, translation, and posttranslation levels of regulation of endosperm weakening in isolated CAPs. Although the impact of inhibiting translation is greater, both transcription and translation are required for the completion of endosperm weakening in the whole seed population. The majority of genes expressed during this process occur in both tissues, but where they are uniquely expressed, or significantly differentially expressed between tissues, this relates to the functions of the RAD as growing tissue and the CAP as a regulator of germination through weakening. More detailed analysis showed that putative orthologs of cell wall-remodeling genes are expressed in a complex manner during CAP weakening, suggesting distinct roles in the RAD and CAP. Expression patterns are also consistent with the CAP being a receptor for environmental signals influencing germination. Inhibitors of the aspartic, serine, and cysteine proteases reduced the number of isolated CAPs in which weakening developed, and inhibition of the 26S proteasome resulted in its complete cessation. This indicates that targeted protein degradation is a major control point for endosperm weakening.
Seed Science Research | 1994
William E. Finch-Savage; P. S. Blake
Fruit and seed development in Quercus robur L. were studied on a single tree over five consecutive seasons. Patterns of growth in the cotyledons and embryonic axes differed between years and resulted in seeds of very different sizes. Moisture content at shedding also differed between years, and late-shed seeds had lower moisture contents than early-shed seeds. Moisture content at shedding was negatively correlated with desiccation tolerance. Seed development in Q. robur therefore appeared indeterminate and did not end in a period of rapid desiccation. Sensitivity to desiccation in Q. robur was not due to an inability to accumulate dehydrin proteins, ABA or soluble sugars, substances that have been linked with the acquisition of desiccation tolerance in orthodox seeds. There were great similarities between several aspects of Q. robur seed development and that of orthodox seeds before the latter entered the terminal phase of rapid desiccation. This pattern of seed development contrasted with that reported for the highly desiccation-sensitive seeds of Avicennia marina.
Seed Science Research | 2000
Valerie Greggains; William E. Finch-Savage; W. Paul Quick; Neil M. Atherton
Recalcitrant seeds are shed moist from the plant and do not survive desiccation to the low moisture contents required for prolonged storage. It has been widely hypothesised that during desiccation of these seeds a stress induced metabolic imbalance develops that leads to free radical mediated damage and viability loss. We investigated this hypothesis in a comparison of two sympatric species of Acer during late seed development and post-harvest desiccation: A. platanoides (Norway maple) has orthodox seeds and A. pseudoplatanus (sycamore) has recalcitrant seeds. In both species, respiration rates declined to similar levels at shedding, and the extent of defences against free radicals appears no less in sycamore than that in Norway maple. During drying there was no evidence for the accumulation of a stable free radical, increased lipid peroxidation or decline in free radical scavenging enzymes in either species. In addition, there was a very similar, large increase in total tocopherol in both species. This increase in sycamore was largely of alpha-tocopherol, whereas in Norway maple the increase was largely from its precursor, gamma-tocopherol. Arguably this suggests a similar mechanism in both species, but increased oxidative stress in sycamore. In general, the results suggest that, although damage resulting in viability loss was clearly taking place, the limitation to desiccation tolerance did not result from inadequate free radical scavenging. Soluble carbohydrates and dehydrin-like proteins were also measured during late seed development and drying in sycamore and Norway maple. The greater concentrations of sucrose, raffinose and stachyose and amounts of dehydrins in the radicles and cotyledons of Norway maple compared with those in sycamore was consistent with greater desiccation tolerance in the former. Sycamore seeds are dormant and at the tolerant end of the continuum of desiccation sensitivity among recalcitrant species, and this may account for their different response to that of the seeds of other more sensitive recalcitrant species studied.
Journal of Experimental Botany | 2016
William E. Finch-Savage; George W. Bassel
Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production.
Seed Science Research | 2012
William E. Finch-Savage; Steven Footitt
A common understanding of the control of germination through dormancy is essential for effective communication between seed scientists whether they are ecologists, physiologists or molecular biologists. Vleeshouwers et al. (1995) realized that barriers between disciplines limited progress and through insightful conclusions in their paper ‘Redefining seed dormancy: an attempt to integrate physiology and ecology’, they did much to overcome these barriers at that time. However, times move on, understanding develops, and now there is a case for ‘Redefining seed dormancy as an integration of physiology, ecology and molecular biology’. Finch-Savage and Leubner-Metzger (2006) had this in mind when they extended and re-interpreted the definition of dormancy proposed by Vleeshouwers et al. (1995), by considering dormancy as a having a number of layers that must be removed, with the final layer of dormancy being synonymous with the stimulation/induction of germination.