Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William F. Laurance is active.

Publication


Featured researches published by William F. Laurance.


Environmental Conservation | 1996

Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities

William F. Laurance; Richard O. Bierregaard

The fragmentation of the tropical rain forests is the subject of this study, which looks at the devastating damage caused to these sensitive areas. By the year 2000 more than half of these forests will have been cut, causing increased soil erosion, watershed destabilization, climate degradation, and extinction of as many as 600,000 species. This volume summarizes what is known about the ecology, management, restoration, socioeconomics and conservation of fragmented forests, and identify key priorities for future work. Covering geographic areas from Southeast Asia and Australia to Madagascar and the New World, the book encapsulates contemporary knowledge and research. Thirty-three papers present the results of recent research and updates from decades-long projects in progress.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Nature | 2011

Primary forests are irreplaceable for sustaining tropical biodiversity

Luke Gibson; Tien Ming Lee; Lian Pin Koh; Barry W. Brook; Toby A. Gardner; Jos Barlow; Carlos A. Peres; William F. Laurance; Thomas E. Lovejoy; Navjot S. Sodhi

Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.


Biological Conservation | 1999

Matrix habitat and species richness in tropical forest remnants

Claude Gascon; Thomas E. Lovejoy; Richard O Bierregaard; Jay R Malcolm; Phillip C Stouffer; Heraldo L. Vasconcelos; William F. Laurance; Barbara Zimmerman; Mandy Tocher; Sérgio Borges

The abilities of species to use the matrix of modified habitats surrounding forest fragments may aAect their vulnerability in fragmented landscapes. We used long-term (up to 19-year) studies of four animal groups in central Amazonia to test whether species’ abundances in the matrix were correlated with their relative extinction proneness in forest fragments. The four groups, birds, frogs, small mammals, and ants, had varying overall responses to fragmentation: species richness of small mammals and frogs increased after fragment isolation, whereas that of birds and ants decreased. For all four groups, a high proportion of nominally primary-forest species were detected in matrix habitats, with 8‐25% of species in each group found exclusively in the matrix. The three vertebrate groups (birds, small mammals, frogs) exhibited positive and significant correlations between matrix abundance and vulnerability to fragmentation, suggesting that species that avoid the matrix tend to decline or disappear in fragments, while those that tolerate or exploit the matrix often remain stable or increase. These results highlight the importance of the matrix in the dynamics and composition of vertebrate communities in tropical forest remnants, and have important implications for the management of fragmented landscapes. # 1999 Elsevier Science Ltd. All rights reserved.


Ecology | 1998

RAIN FOREST FRAGMENTATION AND THE DYNAMICS OF AMAZONIAN TREE COMMUNITIES

William F. Laurance; Leandro V. Ferreira; Judy M. Rankin-de Merona; Susan G. Laurance

Few studies have assessed effects of habitat fragmentation on tropical forest dynamics. We describe results from an 18-yr experimental study of the effects of rain forest fragmentation on tree-community dynamics in central Amazonia. Tree communities were assessed in 39 permanent, 1-ha plots in forest fragments of 1, 10, or 100 ha in area, and in 27 plots in nearby continuous forest. Repeated censuses of >56000 marked trees (≥10 cm diameter at breast height) were used to generate annualized estimates of tree mortality, damage, and turnover in fragmented and continuous forest. On average, forest fragments exhibited markedly elevated dynamics, apparently as a result of increased windthrow and microclimatic changes near forest edges. Mean mortality, damage, and turnover rates were much higher within 60 m of edges (4.01, 4.10, and 3.16%, respectively) and moderately higher within 60–100 m of edges (2.40, 1.96, and 2.05%) than in forest interiors (1.27, 1.48, and 1.15%). Less-pronounced changes in mortality and turnover rates were apparently detectable up to ∼300 m from forest edges. Edge aspect had no significant effect on forest dynamics. Tree mortality and damage rates did not vary significantly with fragment age, suggesting that increased dynamics are not merely transitory effects that occur immediately after fragmentation, while turnover rates increased with age in most (8/9) fragments. These findings reveal that fragmentation causes important changes in the dynamics of Amazonian forests, especially within ∼100 m of habitat edges. A mathematical “core-area model” incorporating these data predicted that edge effects will increase rapidly in importance once fragments fall below ∼100–400 ha in area, depending on fragment shape. Accelerated dynamics in fragments will alter forest structure, floristic composition, biomass, and microclimate and are likely to exacerbate effects of fragmentation on disturbance-sensitive species.


Science Advances | 2015

Habitat fragmentation and its lasting impact on Earth's ecosystems

Nick M. Haddad; Lars A. Brudvig; Jean Clobert; Kendi F. Davies; Andrew Gonzalez; Robert D. Holt; Thomas E. Lovejoy; Joseph O. Sexton; M. P. Austin; Cathy D. Collins; Ellen I. Damschen; Robert M. Ewers; Bryan L. Foster; Clinton N. Jenkins; Andrew King; William F. Laurance; Douglas J. Levey; Chris Margules; Brett A. Melbourne; A. O. Nicholls; John L. Orrock; Dan Xia Song; J. R. G. Townshend

Urgent need for conservation and restoration measures to improve landscape connectivity. We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.


Biological Conservation | 1991

Predicting the impacts of edge effects in fragmented habitats

William F. Laurance; Eric Yensen

Abstract We propose a protocol for assessing the ecological impacts of edge effects in fragments of natural habitat surrounded by induced (artificial) edges. The protocol involves three steps: (1) identification of focal taxa of particular conservation or management interest, (2) measurement of an ‘edge function’ that describes the response of these taxa to induced edges, and (3) use of a ‘Core-Area Model’ to extrapolate edge function parameters to existing or novel situations. The Core-Area Model accurately estimates the total area of pristine habitat contained within fragments. Moreover, it can be used to predict the amount of unaltered habitat preserved within any hypothetical fragment, such as a planned park or nature reserve, regardless of its size or shape. The model is simple, requiring two edge function parameters and the area and perimeter length of the fragment. Model simulations revealed that for any edge-sensitive species and habitat type there exists a critical range of fragment sizes in which the impacts of edge effects increase almost exponentially. This critical size range cannot be predicted without empirical measurement of the edge function.


Biological Conservation | 1999

Reflections on the tropical deforestation crisis

William F. Laurance

Tropical forests do far more than sustain biodiversity; they are homes to indigenous peoples, pharmacopeias of natural products, and provide vital ecosystem services, such as flood amelioration and soil conservation. At regional and global scales, tropical forests also have a major influence on carbon storage and climate. I highlight these benefits, then assess the pattern and pace of tropical forest destruction in the Americas, Asia, and Africa. Asia emerges as the most immediate concern, because it has less surviving forest than the other two regions and higher relative rates of deforestation and logging. At regional and national levels, however, there is enormous variation in rates of forest loss. I discuss some factors that tend to promote forest conversion in developing countries, and propose that four — human population pressure, weak government institutions and poor policies, increasing trade liberalization, and industrial logging — are emerging as key drivers of forest destruction. # 1999 Elsevier Science Ltd. All rights reserved.


Trends in Ecology and Evolution | 2009

Impacts of roads and linear clearings on tropical forests

William F. Laurance; Miriam Goosem; Susan G. Laurance

Linear infrastructure such as roads, highways, power lines and gas lines are omnipresent features of human activity and are rapidly expanding in the tropics. Tropical species are especially vulnerable to such infrastructure because they include many ecological specialists that avoid even narrow (<30-m wide) clearings and forest edges, as well as other species that are susceptible to road kill, predation or hunting by humans near roads. In addition, roads have a major role in opening up forested tropical regions to destructive colonization and exploitation. Here, we synthesize existing research on the impacts of roads and other linear clearings on tropical rainforests, and assert that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems. We also highlight practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species.


Trends in Ecology and Evolution | 2014

Agricultural expansion and its impacts on tropical nature.

William F. Laurance; Jeffrey Sayer; Kenneth G. Cassman

The human population is projected to reach 11 billion this century, with the greatest increases in tropical developing nations. This growth, in concert with rising per-capita consumption, will require large increases in food and biofuel production. How will these megatrends affect tropical terrestrial and aquatic ecosystems and biodiversity? We foresee (i) major expansion and intensification of tropical agriculture, especially in Sub-Saharan Africa and South America; (ii) continuing rapid loss and alteration of tropical old-growth forests, woodlands, and semi-arid environments; (iii) a pivotal role for new roadways in determining the spatial extent of agriculture; and (iv) intensified conflicts between food production and nature conservation. Key priorities are to improve technologies and policies that promote more ecologically efficient food production while optimizing the allocation of lands to conservation and agriculture.

Collaboration


Dive into the William F. Laurance's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Andrade

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrique E. M. Nascimento

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge