Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William G. Brogdon is active.

Publication


Featured researches published by William G. Brogdon.


Memorias Do Instituto Oswaldo Cruz | 2005

Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003

Marcella Pereira da-Cunha; José Bento Pereira Lima; William G. Brogdon; Gonzalo Efrain Moya; Denise Valle

Resistance to cypermethrin of different Aedes aegypti Brazilian populations, collected at two successive periods (2001 and 2002/2003), was monitored using the insecticide-coated bottles bioassay. Slight modifications were included in the method to discriminate between mortality and the knock down effect. Although this pyrethroid was recently started to be used in the country to control the dengue vector, a decrease in susceptibility was noted between both periods analyzed, particularly in the city of Rio de Janeiro. The results indicate that resistance is due at least in part to a target site alteration.


Acta Tropica | 2011

Insecticide resistance status of Aedes aegypti in 10 localities in Colombia.

Clara B. Ocampo; Myriam J. Salazar-Terreros; Neila Julieth Mina; Janet McAllister; William G. Brogdon

Insecticide resistance is one of the major threats to the effectiveness of vector control programs. In order to establish a baseline susceptibility profile of Aedes aegypti in the southwest of Colombia, 10 localities in four Departments (States) were evaluated. Standardized WHO bioassay, CDC bottle bioassay and microplate biochemical assays of non-specific β-esterase (NSE), mixed function oxidases (MFO) and acetylcholinesterase were used. Cross resistance was evaluated with field collected mosquitoes that underwent selection pressure in the laboratory from DDT, propoxur and lambdacyhalothrin during three alternate generations. Mosquitoes with mortality rates below 80% in bioassays were considered resistant. Insecticide resistance varied geographically. Insecticide resistance was observed in 100% of localities in which mosquitoes were exposed to DDT, bendiocarb and temephos using both assays. WHO bioassays showed susceptibility to pyrethroids in all the localities evaluated, however CDC bottle bioassays showed decreases in susceptibility especially with lambdacyhalothrin. All localities showed susceptibility to the organophosphate malathion. Mosquitoes from eight regions with evidence of resistance to any of the insecticide evaluated were also evaluated biochemically. Mosquitoes from five of these regions had increased levels of NSE and two regions had increased levels of MFO. Increase levels of NSE explain partially the low susceptibility to temephos found in all the localities. However, the biochemical mechanisms evaluated do not explain all the resistance observed. Cross resistance was observed between the DDT-selected strain and lambdacyhalothrin, and between the lambdacyhalothrin-selected strain and propoxur and vice versa. The selected strains do not show changes in the biochemical assays evaluated, therefore the observed cross-resistance suggests different biochemical mechanisms. This study shows that Ae. aegypti from Colombia can develop resistance to most of the insecticide classes in the market. Periodic surveillance of insecticide resistance is necessary in order to maintain effective interventions. This study helped to establish the National Network for the surveillance of the insecticide resistance in Colombia.


Acta Tropica | 2011

Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes.

Karen A. Polson; William G. Brogdon; Samuel C Rawlins; Dave D. Chadee

Bioassays and biochemical assays were conducted on eight Trinidadian strains of Aedes aegypti larvae to determine the involvement of biochemical mechanisms in resistance to insecticides. Larval strains were assayed to dichlorodiphenyltrichloroethane (DDT), bendiocarb, temephos and permethrin, using the Centers for Disease Control and Prevention (CDC) time-mortality bioassay method. A Resistance Threshold (RT) was calculated for each insecticide in relation to the CAREC reference susceptible Ae. aegypti strain and larval strains with <80% mortality were considered to be resistant. Biochemical assays were performed to determine the activities of nonspecific esterases (α- and β-), PNPA-esterases, mixed function oxidases (MFO), glutathione-S-transferases (GST) and acetylcholinesterase (AChE) enzymes which are involved in insecticide resistance in mosquitoes. Enzyme profiles of each strain were compared with those of the CAREC reference susceptible strain by Kruskal-Wallis and Dunns multiple comparison tests (p<0.05). The CAREC 99th percentile was calculated for each enzyme and the percentage of individuals with enzyme activities above that of the CAREC 99th percentile was calculated. Activities were classified as unaltered (<50%), incipiently altered (15-50%) or altered (>50%) for each strain. The established RTs for permethrin and bendiocarb were 30 and 75 min, respectively; and 120 min for DDT and temephos. All strains were resistant to DDT (1.00-40.25% mortality) and temephos (11.50-74.50% mortality) while six strains were resistant to bendiocarb (51.50-78.50% mortality) and five to permethrin (6.50-42.50% mortality). Biochemical assays revealed that the median activity levels for all enzymes varied significantly (p<0.05). The Curepe strain had incipiently altered levels of α-esterase while the other seven strains had altered activity with five of them registering 100%. The St Clair strain showed altered activity levels of β-esterase while three strains had incipiently altered levels. The majority of strains had altered activity of MFO enzymes but only the St Clair strain showed altered activity of GST. PNPA-esterases activity was unaltered in all strains and only the Haleland Park strain showed altered remaining AChE activity in the presence of propoxur. Elevated levels of enzymes (incipiently altered or altered), except in the case of PNPA-esterases, show that biochemical resistance may play an important role in the manifestation of insecticide resistance in Trinidadian populations of Ae. aegypti. It is therefore important for insecticide resistance surveillance to be ongoing as the detection of resistance before it spreads throughout an entire population makes it possible for early intervention.


Journal of The American Mosquito Control Association | 2006

MECHANISMS OF INSECTICIDE RESISTANCE IN FIELD POPULATIONS OF AEDES AEGYPTI (L.) FROM QUINTANA ROO, SOUTHERN MEXICO

Adriana E. Flores; Jaime Salomon Grajales; Ildefonso Fernández Salas; Gustavo Ponce García; Ma. Haydee Loaiza Becerra; Saul Lozano; William G. Brogdon; William C. Black; Barry J. Beaty

ABSTRACT Potential insecticide-resistance mechanisms were studied with the use of biochemical assays in Aedes aegypti (L.) collected from 5 municipalities representing the north part of Quintana Roo: Benito Juarez, Cozumel, Isla Mujeres, Lazaro Cardenas, and Solidaridad. The activities of &agr; and &bgr; esterases, mixed-function oxidases (MFO), glutathione-S-transferase (GST), acethylcholinesterase (AChE), and insensitive acethylcholinesterase (iAChE) were assayed in microplates. Three replicates were performed for each enzyme and 60 males and 60 females were analyzed in each population. The New Orleans (NO) susceptible strain of Ae. aegypti was used as a susceptible reference and the threshold criteria for each enzyme were the highest NO absorbance values. In none of the 6 tests were absorbance values correlated in males and females. &agr; esterases were elevated in Benito Juarez, Cozumel females and in Lazaro Cardenas males and females. &bgr; esterases were elevated in Benito Juarez, Cozumel females and in Cozumel and Lazaro Cardenas males. Elevated esterases suggest potential insecticide-resistance mechanisms against organophosphate, carbamate, and some pyrethroid insecticides. Slightly elevated levels of MFOs appeared in Lazaro Cardenas females and in Cozumel, Isla Mujeres, and Solidaridad males. Mechanisms involving iAChE or GST were not apparent.


Parasitology Today | 1989

Biochemical resistance detection: an alternative to bioassay.

William G. Brogdon

Insecticide resistance is an increasing problem in vector control programmes. Until recently, the usual means of detecting it has been by bioassay, requiring the use of relatively large numbers of insects and insecticide-impregnated test papers which may be difficult to prepare and store reproducibly. William Brogdon argues for the use of biochemical microplate assays which are cheaper and easier to use, permit up to 30 assays to be made on a single insect, and give more reproducible results.


Pest Management Science | 2011

Insecticide resistance status of Aedes aegypti (L.) from Colombia

Idalyd Fonseca-González; Martha L. Quiñones; Audrey Lenhart; William G. Brogdon

BACKGROUND To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. RESULTS All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. CONCLUSIONS Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time.


Memorias Do Instituto Oswaldo Cruz | 2007

Association of insecticide use and alteration on Aedes aegypti susceptibility status

Maria de Lourdes da Graça Macoris; Maria Teresa Macoris Andrighetti; Vanessa Camargo Garbeloto Otrera; Lídia Raquel de Carvalho; Antonio Luiz Caldas Júnior; William G. Brogdon

Dengue and dengue hemorrhagic fever, vector-borne diseases transmitted by the mosquito Aedes aegypti, are presently important public health problems in Brazil. As the strategy for disease control is based on vector control through the use of insecticides, the development of resistance is a threat to programs efficacy. The objective of this study was to compare the Aedes aegypti susceptibility in nine vector populations from the state of São Paulo and seven from Northeast region of Brazil, since there was a difference on group of insecticide used between the areas. Bioassays with larvae and adult were performed according to the World Health Organization methods. The results showed higher resistance levels to organophosphates group in populations from the Northeast region where this group was used for both larvae and adult control than in São Paulo where organophosphates were used for larvae and pyretroids for adult control. Resistance to pyretroids in adults was widespread in São Paulo after ten years of use of cypermethrin while in vector populations from the Northeast region it was punctual. The difference in resistance profile between the areas is in accordance to the group of insecticide used.


Memorias Do Instituto Oswaldo Cruz | 2009

Mixed-function oxidases and esterases associated with cross-resistance between DDT and lambda-cyhalothrin in Anopheles darlingi Root 1926 populations from Colombia.

Idalyd Fonseca-González; Martha L. Quiñones; Janet McAllister; William G. Brogdon

In order to establish the insecticide susceptibility status for Anopheles darlingi in Colombia, and as part of the National Network on Insecticide Resistance Surveillance, five populations of insects from three Colombian states were evaluated. Standardised WHO and CDC bottle bioassays, in addition to microplate biochemical assays, were conducted. Populations with mortality rates below 80% in the bioassays were considered resistant. All field populations were susceptible to deltamethrin, permethrin, malathion and fenitrothion. Resistance to lambda-cyhalothrin and DDT was detected in the Amé-Beté population using both bioassay methods with mortality rates of 65-75%. Enzyme levels related to insecticide resistance, including mixed function oxidases (MFO), non-specific esterases (NSE), glutathione S-transferases and modified acetylcholinesterase were evaluated in all populations and compared with a susceptible natural strain. Only mosquitoes from Amé-Beté presented significantly increased levels of both MFO and NSE, consistent with the low mortalities found in this population. The continued use of lambda-cyhalothrin for An. darlingi control in this locality has resulted in a natural resistance to this insecticide. In addition, DDT resistance is still present in this population, although this insecticide has not been used in Colombia since 1992. Increased metabolism through MFO and NSE may be involved in cross-resistance between lambda-cyhalothrin and DDT, although kdr-type nerve insensitivity cannot be discarded as a possible hypothesis. Additional research, including development of a kdr specific assay for An. darlingi should be conducted in future studies. Our data demonstrates the urgent need to develop local insecticide resistance management and surveillance programs throughout Colombia.


Medical and Veterinary Entomology | 2013

Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations.

Eric Ochomo; M. N. Bayoh; William G. Brogdon; John E. Gimnig; Collins Ouma; John M Vulule; Edward D. Walker

Field and laboratory investigations revealed phenotypic, target site and metabolic resistance to permethrin in an Anopheles gambiae s.s. (Diptera: Culicidae) population in Bungoma District, a region in western Kenya in which malaria is endemic and rates of ownership of insecticide‐treated bednets are high. The sensitivity of individual An. gambiae s.l. females as indicated in assays using World Health Organization (WHO) test kits demonstrated reduced mortality in response to permethrin, deltamethrin and bendiocarb. Estimated time to knock‐down of 50% (KDT50) of the test population in Centers for Disease Control (CDC) bottle bioassays was significantly lengthened for the three insecticides compared with that in a susceptible control strain. Anopheles arabiensis from all three sites showed higher mortality to all three insecticides in the WHO susceptibility assays compared with the CDC bottle assays, in which they showed less sensitivity and longer KDT50 than the reference strain for permethrin and deltamethrin. Microplate assays revealed elevated activity of β‐esterases and oxidases, but not glutathione‐S‐transferase, in An. gambiae s.s. survivors exposed to permethrin in bottle bioassays compared with knocked down and unexposed individuals. No An. arabiensis showed elevated enzyme activity. The 1014S kdr allele was fixed in the Bungoma An. gambiae s.s. population and absent from An. arabiensis, whereas the 1014F kdr allele was absent from all samples of both species. Insecticide resistance could compromise vector control in Bungoma and could spread to other areas as coverage with longlasting insecticide‐treated bednets increases.


Parasitology Research | 2009

Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia.

Idalyd Fonseca-González; Rocío Cárdenas; Martha L. Quiñones; Janet McAllister; William G. Brogdon

Field populations of Colombian malaria vector Anopheles (N.) nuneztovari were studied using World Health Organization (WHO) and Center for Disease Control and Prevention (CDC) bioassay techniques and through the use of biochemical microplate-based assays for resistance enzymes. Insecticides evaluated included the pyrethroids lambda-cyhalothrin and deltamethrin, organophosphates malathion and fenitrothion, and the organochlorine dichlorodiphenyltrichloroethane (DDT). Study sites selected were based upon malaria incidence, vector presence, and control activities in Colombia. Early stage selection for reduced susceptibility was observed in the bioassays for some locations. Data from the WHO and CDC bioassay methods were broadly consistent, with some differences noted. Evidence is presented for low-level initial selection of some resistance mechanisms such as mixed-function oxidases and modified acetylcholinesterase. Data from the site Encharcazón implies that selection for DDT-pyrethroid cross-resistance has occurred, though not likely at a level that currently threatens vector control by either class of insecticides, and further implies that knockdown resistance (kdr) may be present in those populations. Further studies using synergists and development of a kdr-specific assay for A. nuneztovari thus become priorities. The resistance levels to lambda-cyhalothrin and deltamethrin found in the Encharcazón population are of concern since these two insecticides are currently used for both indoor spraying and treated nets. In addition, the resistance to fenitrothion, the indoor spray insecticide mostly used for this species due to their exophilic behavior, found in the El Zulia population, makes urgent to find alternatives for chemical control in these areas. These data provide the initial baselines for insecticide susceptibility profiles for A. nuneztovari in Colombia and the first report of insecticide resistance in this vector.

Collaboration


Dive into the William G. Brogdon's collaboration.

Top Co-Authors

Avatar

Janet McAllister

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Robert A. Wirtz

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha L. Quiñones

National University of Colombia

View shared research outputs
Top Co-Authors

Avatar

Karen A. Polson

University of the West Indies

View shared research outputs
Top Co-Authors

Avatar

Samuel C Rawlins

University of the West Indies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary Ranson

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Celia Cordon-Rosales

Universidad del Valle de Guatemala

View shared research outputs
Top Co-Authors

Avatar

Dave D. Chadee

University of the West Indies

View shared research outputs
Researchain Logo
Decentralizing Knowledge