William G. Kepner
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William G. Kepner.
Environmental Modelling and Software | 2007
Scott N. Miller; Darius J. Semmens; David C. Goodrich; Mariano Hernandez; Ryan C. Miller; William G. Kepner; D. Phillip Guertin
A toolkit for distributed hydrologic modeling at multiple scales using two independent models within a geographic information system is presented. This open-source, freely available software was developed through a collaborative endeavor involving two Universities and two government agencies. Called the Automated Geospatial Watershed Assessment tool (AGWA), this software is written for the ArcView GIS platform and is distributed as an extension via the Internet. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both the Soil and Water Assessment Tool (SWAT) and Kinematic Runoff and Erosion model (KINEROS2). These two distributed hydrologic models operate at different time scales and are suitable for application across a range of spatial scales. Descriptions of the GIS framework, hydrologic models, spatial analyses and algorithms that control the modeling process are given. Model requirements, limitations on the model applications and calibration techniques are described with examples of the use of AGWA for watershed modeling and assessment at a range of scales. 2006 Elsevier Ltd. All rights reserved.
Environmental Monitoring and Assessment | 2000
William G. Kepner; Christopher J. Watts; Curtis M. Edmonds; John K. Maingi; Stuart E. Marsh; Gonzalo Luna
Vegetation change in the American West has been a subject of concern throughout the twentieth century. Although many of the changes have been recorded qualitatively through the use of comparative photography and historical reports, little quantitative information has been available on the regional or watershed scale. It is currently possible to measure change over large areas and determine trends in ecological and hydrological condition using advanced space-based technologies. Specifically, this process is being tested in a community-based watershed in southeast Arizona and northeast Sonora, Mexico using a system of landscape pattern measurements derived from satellite remote sensing, spatial statistics, process modeling, and geographic information systems technology. These technologies provide the basis for developing landscape composition and pattern indicators as sensitive measures of large-scale environmental change and thus may provide an effective and economical method for evaluating watershed condition related to disturbance from human and natural stresses. The project utilizes the database from the North American Landscape Characterization (NALC) project which incorporates triplicate Landsat Multi-Spectral Scanner (MSS) imagery from the early 1970s, mid 1980s, and the 1990s. Landscape composition and pattern metrics have been generated from digital land cover maps derived from the NALC images and compared across a nearly 20-year period. Results about changes in land cover for the study period indicate that extensive, highly connected grassland and desertscrub areas are the most vulnerable ecosystems to fragmentation and actual loss due to encroachment of xerophytic mesquite woodland. In the study period, grasslands and desertscrub not only decreased in extent but also became more fragmented. That is, the number of grassland and desertscrub patches increased and their average patch sizes decreased. In stark contrast, the mesquite woodland patches increased in size, number, and connectivity. These changes have important impact for the hydrology of the region, since the energy and water balance characteristics for these cover types are significantly different. The process demonstrates a simple procedure to document changes and determine ecosystem vulnerabilities through the use of change detection and indicator development, especially in regard to traditional degradation processes that have occurred throughout the western rangelands involving changes of vegetative cover and acceleration of water and wind erosion.
Environmental Monitoring and Assessment | 2000
Mariano Hernandez; Scott N. Miller; David C. Goodrich; Bruce Goff; William G. Kepner; Curtis M. Edmonds; K. Bruce Jones
Hydrologic response is an integrated indicator of watershed condition, and significant changes in land cover may affect the overall health and function of a watershed. This paper describes a procedure for evaluating the effects of land cover change and rainfall spatial variability on watershed response. Two hydrologic models were applied on a small semi-arid watershed; one model is event-based with a one-minute time step (KINEROS), and the second is a continuous model with a daily time step (SWAT). The inputs to the models were derived from Geographic Information System (GIS) theme layers of USGS digital elevation models, the State Soil Geographic Database (STATSGO) and the Landsat-based North American Landscape Characterization classification (NALC) in conjunction with available literature and look up tables. Rainfall data from a network of 10 raingauges and historical stream flow data were used to calibrate runoff depth using the continuous hydrologic model from 1966 to 1974. No calibration was carried out for the event-based model, in which six storms from the same period were used in the calculation of runoff depth and peak runoff. The assumption on which much of this study is based is that land cover change and rainfall spatial variability affect the rainfall-runoff relationships on the watershed. To validate this assumption, simulations were carried out wherein the entire watershed was transformed from the 1972 NALC land cover, which consisted of a mixture of desertscrub and grassland, to a single uniform land cover type such as riparian, forest, oak woodland, mesquite woodland, desertscrub, grassland, urban, agriculture, and barren. This study demonstrates the feasibility of using widely available data sets for parameterizing hydrologic simulation models. The simulation results show that both models were able to characterize the runoff response of the watershed due to changes of land cover.
Environmental Monitoring and Assessment | 2004
William G. Kepner; Darius J. Semmens; David A. Mouat; David C. Goodrich
Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits and consequences. The San Pedro River in Arizona and Sonora, Mexico is an area that has undergone rapid changes in land use and cover, and subsequently is facing keen environmental crises related to water resources. It is the location of a number of studies that have dealt with change analysis, watershed condition, and most recently, alternative futures analysis. The previous work has dealt primarily with resources of habitat, visual quality, and groundwater related to urban development patterns and preferences. In the present study, previously defined future scenarios, in the form of land-use/land-cover grids, were examined relative to their impact on surface-water conditions (e.g., surface runoff and sediment yield). These hydrological outputs were estimated for the baseline year of 2000 and predicted twenty years in the future as a demonstration of how new geographic information system-based hydrologic modeling tools can be used to evaluate the spatial impacts of urban growth patterns on surface-water hydrology.
Agricultural and Forest Meteorology | 2000
David C. Goodrich; A. Chehbouni; B. Goff; B. MacNish; Thomas Maddock; S. Moran; William James Shuttleworth; David G. Williams; C. Watts; L.H. Hipps; D. I. Cooper; J. Schieldge; Yann Kerr; Hector Arias; M. Kirkland; R. Carlos; P. Cayrol; William G. Kepner; B. Jones; Roni Avissar; A. Bégué; Jean-Marc Bonnefond; G. Boulet; B. Branan; J.P. Brunel; L.C. Chen; T. Clarke; M.R. Davis; H. DeBruin; G. Dedieu
The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere-biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997-1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources.
Environmental Monitoring and Assessment | 1997
David A. Mouat; Judith Lancaster; Timothy G. Wade; James D. Wickham; Carl Fox; William G. Kepner; Timothy Ball
Desertification has been defined as land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, including climatic variations and human activities (United Nations, 1992). A technique for identifying and assessing areas at risk fordesertification in the arid, semi-arid, and subhumid regionsof the United States was developed by the Desert Research Institute and the U.S. Environmental Protection Agency (EPA), using selected environmental indicators integrated into a Geographic Information System (GIS). Five indicators were selected: potential erosion, grazing pressure, climatic stress (expressed as a function of changesin the Palmer Drought Severity Index [PDSI]), change invegetation greenness (derived from the Normalized DifferenceVegetation Index [NDVI]), and weedy invasives as a percentof total plant cover. The data were integrated over aregional geographic setting using a GIS, which facilitateddata display, development and exploration of data relationships, including manipulation and simulation testing. By combining all five data layers, landscapes having a varying risk for land degradation were identified, providing a tool which could be used to improve landmanagement efficiency.
Environmental Monitoring and Assessment | 1995
R. P. Breckenridge; William G. Kepner; David A. Mouat
This paper reports on a process for selecting a suite of indicators that, in combination, can be useful in assessing the ecological conditions of rangelands. Conceptual models that depict the structural and functional properties of ecological processes were used to show the linkages between ecological components and their importance in assessing the status and trends of ecological resources on a regional scale. Selection criteria were developed so that relationships could be assessed at different spatial scales using ground and aerial measurements. Parameters including responsiveness and sensitivity to change, quality assurance and control, temporal and spatial variability, cost-effectiveness and statistical design played an important role in determining how indicators were selected. A total of ten indicator categories were selected by a committee of scientists for evaluation in the program. A subset that included soil properties, vegetation composition and abundance, and spectral properties was selected for evaluation in a pilot test conducted in 1992 in the Colorado Plateau region of the southwestern United States. This work is part of a major effort being undertaken by the U.S. Environmental Protection Agency and its collaborators to assess the condition of rangelands (primarily comprised of arid, semi-arid and dry subhumid ecosystems) along with seven other ecosystem groups (forests, agricultural lands, wetlands, surface waters, landscapes, estuaries and Great Lakes) as part of a national Environmental Monitoring and Assessment Program (EMAP). The indicator selection process reported upon was developed to support EMAPs goal of providing long-term, policy-relevant research focusing on evaluating the ecological condition (or health) of regional and national resources.
Archive | 2006
William G. Kepner; J. L. Rubio; David A. Mouat; Fausto Pedrazzini
Proceedings of the NATO Mediterranean Dialogue Workshop on Desertification in the Mediterranean Region. A Security Issue Valencia, Spain 2-5 December 2003
Agricultural and Forest Meteorology | 2000
A. Chehbouni; David C. Goodrich; M.S Moran; Christopher J. Watts; Yann Kerr; Gérard Dedieu; William G. Kepner; William James Shuttleworth; Soroosh Sorooshian
The objective of this paper is to provide an overview of the primary results of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program in the context of improvements to our overall understanding of hydrologic, ecologic, and atmospheric processes and their interactions in a semi-arid basin. The major findings and future research needs associated with the different core components of the program are emphasized. First, remote-sensing investigations are discussed, especially those directed toward taking full advantage of the capabilities of the new generation of satellites (ERS2/ATSR2, VEGETATION, LANDSAT7, NASA-EOS). Second, we discuss parameterization of the water and energy fluxes in arid and semi-arid regions, with special emphasis on methods to aggregate these fluxes from patch scale to grid scale. Third, we address the issues related to grassland ecology and competition for water between native grass and invasive mesquite species. Fourth, findings related to the interactions between surface water, ground water, and vegetation in a semi-arid riparian system are discussed. Next, an assessment of land use and land cover change over the entire basin over a quarter century is reviewed. Finally, unsolved issues and the needs for further research are outlined.
2005 Watershed Management Conference - Managing Watersheds for Human and Natural Impacts: Engineering, Ecological, and Economic Challenges | 2005
David C. Goodrich; H. Evan Canfield; I. Shea Burns; D. J. Semmens; S. N. Miller; M. Hernandez; Lainie R. Levick; David P. Guertin; William G. Kepner
Rapid post-fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Burned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources. These decisions are inherently complex and spatial in nature and require a distributed hydrological modeling approach. The extensive data requirements and the task of building input parameter files have presented obstacles to the timely and effective use of complex distributed rainfallrunoff and erosion models by BAER teams and resource managers. Geospatial tools and readily-available digital sources of pre-fire land cover, topography, and soils combined with rainfall-runoff and erosion models can expedite assessments if properly combined, provided a post-fire burn-severity map is available. The AGWA (Automated Geospatial Watershed Assessment) hydrologic modeling tool was developed to utilize nationally available spatial data sets and both empirical (SWAT) and more process-based (KINEROS2) distributed hydrologic models (see: www.tucson.ars.ag.gov/agwa). Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM). The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then run, and the results are imported back into AGWA for graphical display. AGWA can difference results from pre- and post-fire model simulations and display the change on the modeled watershed. This allows managers to identify potential problem areas where mitigation activities can be focused. An overview of AGWA and an application of it to the 2003 Aspen fire north of Tucson, Arizona are discussed herein.