Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Bisson is active.

Publication


Featured researches published by William H. Bisson.


Nature Communications | 2015

Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction

Changtao Jiang; Cen Xie; Ying Lv; Jing Li; Kristopher W. Krausz; Jingmin Shi; Chad Brocker; Dhimant Desai; Shantu Amin; William H. Bisson; Yulan Liu; Oksana Gavrilova; Andrew D. Patterson; Frank J. Gonzalez

The farnesoid X receptor (FXR) regulates bile acid, lipid and glucose metabolism. Here we show that treatment of mice with glycine-β-muricholic acid (Gly-MCA) inhibits FXR signalling exclusively in intestine, and improves metabolic parameters in mouse models of obesity. Gly-MCA is a selective high-affinity FXR inhibitor that can be administered orally and prevents, or reverses, high-fat diet-induced and genetic obesity, insulin resistance and hepatic steatosis in mice. The high-affinity FXR agonist GW4064 blocks Gly-MCA action in the gut, and intestine-specific Fxr-null mice are unresponsive to the beneficial effects of Gly-MCA. Mechanistically, the metabolic improvements with Gly-MCA depend on reduced biosynthesis of intestinal-derived ceramides, which directly compromise beige fat thermogenic function. Consequently, ceramide treatment reverses the action of Gly-MCA in high-fat diet-induced obese mice. We further show that FXR signalling in ileum biopsies of humans positively correlates with body mass index. These data suggest that Gly-MCA may be a candidate for the treatment of metabolic disorders.


Toxicological Sciences | 2011

Estrogen-Like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow Trout Estrogen Receptors In Vitro

Abby D. Benninghoff; William H. Bisson; Daniel C. Koch; David J. Ehresman; Siva Kumar Kolluri; David E. Williams

The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC(50)) values of 15.2-289 μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10-1000 nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern.


Journal of Medicinal Chemistry | 2009

Modeling of the Aryl Hydrocarbon Receptor (AhR) Ligand Binding Domain and Its Utility in Virtual Ligand Screening to Predict New AhR Ligands

William H. Bisson; Daniel C. Koch; Edmond O'Donnell; Sammy M. Khalil; Nancy I. Kerkvliet; Robert L. Tanguay; Ruben Abagyan; Siva Kumar Kolluri

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor; the AhR Per-AhR/Arnt-Sim (PAS) domain binds ligands. We developed homology models of the AhR PAS domain to characterize previously observed intra- and interspecies differences in ligand binding using molecular docking. In silico structure-based virtual ligand screening using our model resulted in the identification of pinocembrin and 5-hydroxy-7-methoxyflavone, which promoted nuclear translocation and transcriptional activation of AhR and AhR-dependent induction of endogenous target genes.


Scientific Reports | 2015

Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles

Troy D. Hubbard; Iain A. Murray; William H. Bisson; Tejas S. Lahoti; Krishne Gowda; Shantu Amin; Andrew D. Patterson; Gary H. Perdew

Ligand activation of the aryl hydrocarbon (AHR) has profound effects upon the immunological status of the gastrointestinal tract, establishing and maintaining signaling networks, which facilitate host-microbe homeostasis at the mucosal interface. However, the identity of the ligand(s) responsible for such AHR-mediated activation within the gut remains to be firmly established. Here, we combine in vitro ligand binding, quantitative gene expression, protein-DNA interaction and ligand structure activity analyses together with in silico modeling of the AHR ligand binding domain to identify indole, a microbial tryptophan metabolite, as a human-AHR selective agonist. Human AHR, acting as a host indole receptor may exhibit a unique bimolecular (2:1) binding stoichiometry not observed with typical AHR ligands. Such bimolecular indole-mediated activation of the human AHR within the gastrointestinal tract may provide a foundation for inter-kingdom signaling between the enteric microflora and the immune system to promote commensalism within the gut.


Cancer Prevention Research | 2009

α-Keto acid metabolites of naturally-occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells

Jeong-In Lee; Hui Nian; Arthur J. L. Cooper; Raghu Sinha; Jenny Dai; William H. Bisson; Roderick H. Dashwood; John T. Pinto

Histone deacetylase (HDAC) inhibitors are gaining interest as cancer therapeutic agents. We tested the hypothesis that natural organoselenium compounds might be metabolized to HDAC inhibitors in human prostate cancer cells. Se-Methyl-l-selenocysteine (MSC) and selenomethionine are amino acid components of selenium-enriched yeast. In a cell-free system, glutamine transaminase K (GTK) and l-amino acid oxidase convert MSC to the corresponding α-keto acid, β-methylselenopyruvate (MSP), and l-amino acid oxidase converts selenomethionine to its corresponding α-keto acid, α-keto-γ-methylselenobutyrate (KMSB). Although methionine (sulfur analogue of selenomethionine) is an excellent substrate for GTK, selenomethionine is poorly metabolized. Structurally, MSP and KMSB resemble the known HDAC inhibitor butyrate. We examined androgen-responsive LNCaP cells and androgen-independent LNCaP C4-2, PC-3, and DU145 cells and found that these human prostate cancer cells exhibit endogenous GTK activities. In the corresponding cytosolic extracts, the metabolism of MSC was accompanied by the concomitant formation of MSP. In MSP-treated and KMSB-treated prostate cancer cell lines, acetylated histone 3 levels increased within 5 hours, and returned to essentially baseline levels by 24 hours, suggesting a rapid, transient induction of histone acetylation. In an in vitro HDAC activity assay, the selenoamino acids, MSC and selenomethionine, had no effect at concentrations up to 2.5 mmol/L, whereas MSP and KMSB both inhibited HDAC activity. We conclude that, in addition to targeting redox-sensitive signaling proteins and transcription factors, α-keto acid metabolites of MSC and selenomethionine can alter HDAC activity and histone acetylation status. These findings provide a potential new paradigm by which naturally occurring organoselenium might prevent the progression of human prostate cancer.


Epigenetics | 2013

HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates

Praveen Rajendran; Ariam I. kidane; Tian-Wei Yu; Wan-Mohaiza Dashwood; William H. Bisson; Christiane V. Löhr; Emily Ho; David E. Williams; Roderick H. Dashwood

Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.


Carcinogenesis | 2015

Environmental immune disruptors, inflammation and cancer risk

Patricia A. Thompson; Mahin Khatami; Carolyn J. Baglole; Jun Sun; Shelley A. Harris; Eun-Yi Moon; Fahd Al-Mulla; Rabeah Al-Temaimi; Dustin G. Brown; Anna Maria Colacci; Chiara Mondello; Jayadev Raju; Elizabeth P. Ryan; Jordan Woodrick; A.Ivana Scovassi; Neetu Singh; Monica Vaccari; Rabindra Roy; Stefano Forte; Lorenzo Memeo; Hosni K. Salem; Amedeo Amedei; Roslida A. Hamid; Leroy Lowe; Tiziana Guarnieri; William H. Bisson

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.


Journal of Pharmacology and Experimental Therapeutics | 2011

Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

Kayla J. Smith; Iain A. Murray; Rachel Tanos; John Tellew; Anthony E. Boitano; William H. Bisson; Siva Kumar Kolluri; Michael P. Cooke; Gary H. Perdew

The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, “pure” or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a pure antagonist with the capacity to inhibit both DRE-dependent and -independent activity.


PLOS ONE | 2010

The Anti-Inflammatory Drug Leflunomide Is an Agonist of the Aryl Hydrocarbon Receptor

Edmond O'Donnell; Katerine S. Saili; Daniel C. Koch; Prasad Rao Kopparapu; David Farrer; William H. Bisson; Lijoy K. Mathew; Sumitra Sengupta; Nancy I. Kerkvliet; Robert L. Tanguay; Siva Kumar Kolluri

Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases. Methodology/Principal Findings During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR. Conclusions These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders.


Carcinogenesis | 2015

Causes of genome instability: the effect of low dose chemical exposures in modern society

Sabine A.S. Langie; Gudrun Koppen; Daniel Desaulniers; Fahd Al-Mulla; Rabeah Al-Temaimi; Amedeo Amedei; Amaya Azqueta; William H. Bisson; Dustin G. Brown; Gunnar Brunborg; Amelia K. Charles; Tao Chen; Annamaria Colacci; Firouz Darroudi; Stefano Forte; Laetitia Gonzalez; Roslida A. Hamid; Lisbeth E. Knudsen; Luc Leyns; Adela Lopez de Cerain Salsamendi; Lorenzo Memeo; Chiara Mondello; Carmel Mothersill; Ann-Karin Olsen; Sofia Pavanello; Jayadev Raju; Emilio Rojas; Rabindra Roy; Elizabeth P. Ryan; Patricia Ostrosky-Wegman

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genomes integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.

Collaboration


Dive into the William H. Bisson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Mondello

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dustin G. Brown

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Rabindra Roy

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge