Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Brune is active.

Publication


Featured researches published by William H. Brune.


Science | 1991

Free Radicals Within the Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss

J. G. Anderson; D. W. Toohey; William H. Brune

How strong is the case linking global release of chlorofluorocarbons to episodic disappearance of ozone from the Antarctic stratosphere each austral spring? Three lines of evidence defining a link are (i) observed containment in the vortex of ClO concentrations two orders of magnitude greater than normal levels; (ii) in situ observations obtained during ten high-altitude aircraft flights into the vortex as the ozone hole was forming that show a decrease in ozone concentrations as ClO concentrations increased; and (iii) a comparison between observed ozone loss rates and those predicted with the use of absolute concentrations of ClO and BrO, the rate-limiting radicals in an array of proposed catalytic cycles. Recent advances in our understanding of the kinetics, photochemistry, and structural details of key intermediates in these catalytic cycles as well as an improved absolute calibration for ClO and BrO concentrations at the temperatures and pressures encountered in the lower antarctic stratosphere have been essential for defining the link.


Journal of Geophysical Research | 2007

Surface and Lightning Sources of Nitrogen Oxides over the United States: Magnitudes, Chemical Evolution, and Outflow

Rynda C. Hudman; Daniel J. Jacob; Solène Turquety; Eric M. Leibensperger; Lee T. Murray; Shiliang Wu; Alice B. Gilliland; M. Avery; Timothy H. Bertram; William H. Brune; R. C. Cohen; Jack E. Dibb; F. Flocke; Alan Fried; John S. Holloway; J. A. Neuman; Richard E. Orville; A. E. Perring; Xinrong Ren; G. W. Sachse; Hanwant B. Singh; Aaron L. Swanson; P. J. Wooldridge

[1] We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NOx. The boundary layer NOx data provide top-down verification of a 50% decrease in power plant and industry NOx emissions over the eastern United States between 1999 and 2004. Observed NOx concentrations at 8–12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NOx observations with GEOS-Chem requires a factor of 4 increase in modeled NOx yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NOy-CO correlation analysis of the fraction f of North American NOx emissions vented to the free troposphere as NOy (sum of NOx and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NOy export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export.


Atmospheric Environment | 2001

Chemistry of HOx radicals in the upper troposphere

Lyatt Jaeglé; Daniel J. Jacob; William H. Brune; Paul O. Wennberg

Aircraft observations from three recent missions (STRAT, SUCCESS, SONEX) are synthesized into a theoretical analysis of the factors controlling the concentrations of HO_x radicals (HO_x=OH+peroxy) and the larger reservoir family HO_y (HO_y=HO_x+2H_2O_2+2CH_3OOH+HNO_2+HNO_4) in the upper troposphere. Photochemical model calculations capture 66% of the variance of observed HOx concentrations. Two master variables are found to determine the variance of the 24 h average HOx concentrations: the primary HO_x production rate, P(HO_x), and the concentration of nitrogen oxide radicals (NO_x=NO+NO_2). We use these two variables as a coordinate system to diagnose the photochemistry of the upper troposphere and map the different chemical regimes. Primary HO_x production is dominated by the O(^1D)+H_2O reaction when [H_2O]>100 ppmv, and by photolysis of acetone (and possibly other convected HO_x precursors) under drier conditions. For the principally northern midlatitude conditions sampled by the aircraft missions, the HO_x yield from acetone photolysis ranges from 2 to 3. Methane oxidation amplifies the primary HO_x source by a factor of 1.1–1.9. Chemical cycling within the HO_x family has a chain length of 2.5–7, while cycling between the HO_x family and its HO_y reservoirs has a chain length of 1.6–2.2. The number of ozone molecules produced per HO_y molecule consumed ranges from 4 to 12, such that ozone production rates vary between 0.3 and 5 ppbv d^(−1) in the upper troposphere. Three chemical regimes (NO_x-limited, transition, NO_x-saturated) are identified to describe the dependence of HO_x concentrations and ozone production rates on the two master variables P(HO_x) and [NO_x]. Simplified analytical expressions are derived to express these dependences as power laws for each regime. By applying an eigenlifetime analysis to the HO_x–NO_x–O_3 chemical system, we find that the decay of a perturbation to HO_y in the upper troposphere (as from deep convection) is represented by four dominant modes with the longest time scale being factors of 2–3 times longer than the steady-state lifetime of HO_y.


Journal of Geophysical Research | 2001

HO x budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign

D. Tan; Ian C. Faloona; J. B. Simpas; William H. Brune; Paul B. Shepson; Tara L. Couch; Ann Louise Sumner; Mary Anne Carroll; T. Thornberry; Eric C. Apel; Daniel D. Riemer; William R. Stockwell

Results from a tightly constrained photochemical point model for OH and HO2 are compared to OH and HO2 data collected during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer 1998 intensive campaign held in northern Michigan. The PROPHET campaign was located in a deciduous forest marked by relatively low NOx levels and high isoprene emissions. Detailed HOx budgets are presented. The model is generally unable to match the measured OH, with the observations 2.7 times greater than the model on average. The model HO2, however, is in good agreement with the measured HO2. Even with an additional postulated OH source from the ozonolysis of unmeasured terpenes, the measured OH is 1.5 times greater than the model; the model HO2 with this added source is 15% to 30% higher than the measured HO2. Moreover, the HO2/OH ratios as modeled are 2.5 to 4 times higher than the measured ratios, indicating that the cycling between OH and HO2 is poorly described by the model. We discuss possible reasons for the discrepancies.


Journal of Geophysical Research | 2000

Photochemistry of HO x in the upper troposphere at northern midlatitudes

Lyatt Jaeglé; Daniel J. Jacob; William H. Brune; Ian C. Faloona; D. Tan; Brian G. Heikes; Yasuyuki Kondo; G. W. Sachse; Bruce E. Anderson; G. L. Gregory; Hanwant B. Singh; R. F. Pueschel; G. V. Ferry; D. R. Blake; Richard E. Shetter

The factors controlling the concentrations of HOx radicals (= OH + peroxy) in the upper troposphere (8–12 km) are examined using concurrent aircraft observations of OH, HO2, H2O2, CH3OOH, and CH2O made during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) at northern midlatitudes in the fall. These observations, complemented by concurrent measurements of O3, H2O, NO, peroxyacetyl nitrate (PAN), HNO3, CH4, CO, acetone, hydrocarbons, actinic fluxes, and aerosols, allow a highly constrained mass balance analysis of HOx and of the larger chemical family HOy (= HOx + 2 H2O2 + 2 CH3OOH + HNO2 + HNO4). Observations of OH and HO2 are successfully simulated to within 40% by a diel steady state model constrained with observed H2O2 and CH3OOH. The model captures 85% of the observed HOx variance, which is driven mainly by the concentrations of NOx (= NO + NO2) and by the strength of the HOx primary sources. Exceptions to the good agreement between modeled and observed HOx are at sunrise and sunset, where the model is too low by factors of 2–5, and inside cirrus clouds, where the model is too high by factors of 1.2–2. Heterogeneous conversion of NO2 to HONO on aerosols (γNO2 = 10−3) during the night followed by photolysis of HONO could explain part of the discrepancy at sunrise. Heterogeneous loss of HO2 on ice crystals (γice_HO2 = 0.025) could explain the discrepancy in cirrus. Primary sources of HOx from O(1D)+H2O and acetone photolysis were of comparable magnitude during SONEX. The dominant sinks of HOy were OH+HO2 (NOx 50 pptv). Observed H2O2 concentrations are reproduced by model calculations to within 50% if one allows in the model for heterogeneous conversion of HO2 to H2O2 on aerosols (γHO2 = 0.2). Observed CH3OOH concentrations are underestimated by a factor of 2 on average. Observed CH2O concentrations were usually below the 50 pptv detection limit, consistent with model results; however, frequent occurrences of high values in the observations (up to 350 pptv) are not captured by the model. These high values are correlated with high CH3OH and with cirrus clouds. Heterogeneous oxidation of CH3OH to CH2O on aerosols or ice crystals might provide an explanation (γice_CH3OH ∼ 0.01 would be needed).


Atmospheric Chemistry and Physics | 2007

Introducing the concept of Potential Aerosol Mass (PAM)

E. Kang; M. J. Root; D. W. Toohey; William H. Brune

Potential Aerosol Mass (PAM) can be defined as the maximum aerosol mass that the oxidation of precursor gases produces. In the measurement, all precursor gases are rapidly oxidized with extreme amounts of oxidants to low volatility compounds, resulting in the aerosol formation. Oxidation occurs in a small, simple, flow-through chamber that has a short residence time and is irradiated with ultraviolet light. The amount of the oxidants ozone (O3), hydroxyl (OH), and hydroperoxyl (HO2) were measured directly and can be controlled by varying the UV light and the relative humidity. Maximum values were 40 ppmv for O3, 500 pptv for OH, and 4 ppbv for HO2. The oxidant amounts are 100 to 1000 times troposphere values, but the ratios OH/O3 and HO2/OH are similar to troposphere values. The aerosol production mechanism and the aerosol mass yield were studied for several controlling variables, such as temperature, relative humidity, oxidant concentration, presence of nitrogen oxides (NOx), precursor gas composition and amount, and the presence of acidic seed aerosol. The measured secondary organic aerosol (SOA) yield of several natural and anthropogenic volatile organic compounds and a mixture of hydrocarbons in the PAM chamber were similar to those obtained in large, batch-style environmental chambers. This PAM method is being developed for measuring potential aerosol mass in the atmosphere, but is also useful for examining SOA processes in the laboratory and in environmental chambers.


Journal of Geophysical Research | 2008

HOx chemistry during INTEX‐A 2004: Observation, model calculation, and comparison with previous studies

Xinrong Ren; J. R. Olson; J. H. Crawford; William H. Brune; Jingqiu Mao; Robert B. Long; Zhong Chen; G. Chen; Melody A. Avery; Glen W. Sachse; J. Barrick; Glenn S. Diskin; L. Greg Huey; Alan Fried; R. C. Cohen; Brian G. Heikes; Paul O. Wennberg; Hanwant B. Singh; D. R. Blake; Richard E. Shetter

OH and HO_2 were measured with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) as part of a large measurement suite from the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment-A (INTEX-A). This mission, which was conducted mainly over North America and the western Atlantic Ocean in summer 2004, was an excellent test of atmospheric oxidation chemistry. The HOx results from INTEX-A are compared to those from previous campaigns and to results for other related measurements from INTEX-A. Throughout the troposphere, observed OH was generally 0.95 of modeled OH; below 8 km, observed HO_2 was generally 1.20 of modeled HO_2. This observed-to-modeled comparison is similar to that for TRACE-P, another midlatitude study for which the median observed-to-modeled ratio was 1.08 for OH and 1.34 for HO_2, and to that for PEM-TB, a tropical study for which the median observed-to-modeled ratio was 1.17 for OH and 0.97 for HO_2. HO_2 behavior above 8 km was markedly different. The observed-to-modeled HO_2 ratio increased from ∼1.2 at 8 km to ∼3 at 11 km with the observed-to-modeled ratio correlating with NO. Above 8 km, the observed-to-modeled HO_2 and observed NO were both considerably greater than observations from previous campaigns. In addition, the observed-to-modeled HO_2/OH, which is sensitive to cycling reactions between OH and HO_2, increased from ∼1.5 at 8 km to almost 3.5 at 11 km. These discrepancies suggest a large unknown HO_x source and additional reactants that cycle HO_x from OH to HO_2. In the continental planetary boundary layer, the observed-to-modeled OH ratio increased from 1 when isoprene was less than 0.1 ppbv to over 4 when isoprene was greater than 2 ppbv, suggesting that forests throughout the United States are emitting unknown HO_x sources. Progress in resolving these discrepancies requires a focused research activity devoted to further examination of possible unknown OH sinks and HO_x sources.


Journal of Geophysical Research | 2001

Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy

Ian C. Faloona; D. Tan; William H. Brune; Julia M. Hurst; Dennis J. Barket; Tara L. Couch; Paul B. Shepson; Eric C. Apel; Daniel D. Riemer; Troy Thornberry; Mary Anne Carroll; Sanford Sillman; Gerald J. Keeler; Jessica Sagady; Dianne L. Hooper; Kurt Paterson

Diurnal measurements of hydroxyl and hydroperoxy radicals (OH and HO2) made during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer intensive of 1998 indicate that these key components of gas phase atmospheric oxidation are sustained in significant amounts throughout the night in this northern forested region. Typical overnight levels of OH observed were 0.04 parts per trillion (pptv) (1.1 × 106 molecules/cm3), while HO2 concentrations ranged from 1 to 4 pptv. Results of diagnostic testing performed before, after, and during the deployment suggest little possibility of interferences in the measurements. Collocated measurements of the reactive biogenic hydrocarbon isoprene corroborate the observed levels of OH by exhibiting significant decays overnight above the forest canopy. The observed isoprene lifetimes ranged from 1.5 to 12 hours in the dark, and they correlate well to those expected from chemical oxidation by the measured OH abundances. Possible dark reactions that could generate such elevated levels of OH include the ozonolysis of extremely reactive biogenic terpenoids. However, in steady state models, which include this hypothetical production mechanism, HO2 radicals are generated in greater quantities than were measured. Nonetheless, if the measurements are representative of the nocturnal boundary layer in midlatitude temperate forests, this observed nocturnal phenomenon might considerably alter our understanding of the diurnal pattern of atmospheric oxidation in such pristine, low-NOx environments.


Geophysical Research Letters | 1998

Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS

William H. Brune; Ian C. Faloona; David Tan; Andrew J. Weinheimer; Teresa L. Campos; B. A. Ridley; S. A. Vay; J. E. Collins; G. W. Sachse; Lyatt Jaeglé; Daniel J. Jacob

The hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured for the first time throughout the troposphere and in the lower stratosphere with a new instrument aboard the NASA DC-8 aircraft during the 1996 SUCCESS mission. Typically midday OH was 0.1-0.5 pptv and HO2 was 3-15 pptv. Comparisons with a steady-state model yield the following conclusions. First, even in the lower stratosphere OH was sensitive to the albedo of low clouds and distant high clouds. Second, although sometimes in agreement with models, observed OH and HO2 were more than 4 times larger at other times. Evidence suggests that for the California upper troposphere on 10 May this discrepancy was due to unmeasured HOx sources from Asia. Third, observed HO2/OH had the expected inverse dependence with NO, but was inexplicably higher than modeled HO2/OH by an average of 30%. Finally, small-scale, midday OH and HO2 features were strongly linked to NO variations.


Bulletin of the American Meteorological Society | 2015

The Deep Convective Clouds and Chemistry (DC3) Field Campaign

M. C. Barth; C. A. Cantrell; William H. Brune; Steven A. Rutledge; J. H. Crawford; Heidi Huntrieser; Lawrence D. Carey; Donald R. MacGorman; Morris L. Weisman; Kenneth E. Pickering; Eric C. Bruning; Bruce E. Anderson; Eric C. Apel; Michael I. Biggerstaff; Teresa L. Campos; Pedro Campuzano-Jost; R. C. Cohen; John D. Crounse; Douglas A. Day; Glenn S. Diskin; F. Flocke; Alan Fried; C. Garland; Brian G. Heikes; Shawn B. Honomichl; Rebecca S. Hornbrook; L. Gregory Huey; Jose L. Jimenez; Timothy J. Lang; Michael Lichtenstern

AbstractThe Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source character...

Collaboration


Dive into the William H. Brune's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard E. Shetter

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul O. Wennberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. R. Olson

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Xiaopin Ren

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Brian G. Heikes

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge