Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Chappell is active.

Publication


Featured researches published by William H. Chappell.


Leukemia | 2011

Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy

Linda S. Steelman; Richard A. Franklin; Steve L. Abrams; William H. Chappell; C. R. Kempf; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Peter P. Ruvolo; Vivian Ruvolo; Cecilia Evangelisti; A M Martelli; James A. McCubrey

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Leukemia | 2011

Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway

A M Martelli; Cecilia Evangelisti; William H. Chappell; Steve L. Abrams; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Vivian Ruvolo; Peter P. Ruvolo; C. R. Kempf; Linda S. Steelman; James A. McCubrey

It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5′-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.


Leukemia | 2011

Roles of the RassRafsMEKsERK pathway in leukemia therapy

Linda S. Steelman; Richard A. Franklin; Steve L. Abrams; William H. Chappell; C. R. Kempf; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Peter P. Ruvolo; Vivian Ruvolo; Cecilia Evangelisti; A M Martelli; James A. McCubrey

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Expert Opinion on Therapeutic Targets | 2008

Akt as a therapeutic target in cancer

Linda S. Steelman; Kristin Stadelman; William H. Chappell; Stefan Horn; Jörg Bäsecke; Melchiorre Cervello; Ferdinando Nicoletti; Massimo Libra; Franca Stivala; Alberto M. Martelli; James A. McCubrey

Background: The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. Objective: This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. Methods: We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. Results/conclusions: The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.


Journal of Cellular Physiology | 2011

Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways.

James A. McCubrey; Linda S. Steelman; C. Ruth Kempf; William H. Chappell; Stephen L. Abrams; Franca Stivala; Graziella Malaponte; Ferdinando Nicoletti; Massimo Libra; Jörg Bäsecke; Danijela Maksimovic-Ivanic; Sanja Mijatović; Giuseppe Montalto; Melchiorre Cervello; Lucio Cocco; Alberto M. Martelli

Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health. J. Cell. Physiol. 226: 2762–2781, 2011.


Oncogene | 2008

Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors.

Linda S. Steelman; Patrick M. Navolanic; Melissa Sokolosky; Jackson R. Taylor; Brian D. Lehmann; William H. Chappell; Steven L. Abrams; Ellis W.T. Wong; Kristin Stadelman; David M. Terrian; Nick R. Leslie; C. Alberto M. Martelli; Franca Stivala; Massimo Libra; Richard A. Franklin; James A. McCubrey

Ectopic expression of mutant forms of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) lacking lipid (G129E) or lipid and protein (C124S) phosphatase activity decreased sensitivity of MCF-7 breast cancer cells, which have wild-type PTEN, to doxorubicin and increased sensitivity to the mammalian target of rapamycin (mTOR) inhibitor rapamycin. Cells transfected with a mutant PTEN gene lacking both lipid and protein phosphatase activities were more resistant to doxorubicin than cells transfected with the PTEN mutant lacking lipid phosphatase activity indicating that the protein phosphatase activity of PTEN was also important in controlling the sensitivity to doxorubicin, while no difference was observed between the lipid (G129E) and lipid and protein (C124S) phosphatase PTEN mutants in terms of sensitivity to rapamycin. A synergistic inhibitory interaction was observed when doxorubicin was combined with rapamycin in the phosphatase-deficient PTEN-transfected cells. Interference with the lipid phosphatase activity of PTEN was sufficient to activate Akt/mTOR/p70S6K signaling. These studies indicate that disruption of the normal activity of the PTEN phosphatase can have dramatic effects on the therapeutic sensitivity of breast cancer cells. Mutations in the key residues which control PTEN lipid and protein phosphatase may act as dominant-negative mutants to suppress endogenous PTEN and alter the sensitivity of breast cancer patients to chemo- and targeted therapies.


Cell Cycle | 2008

Targeting prostate cancer based on signal transduction and cell cycle pathways

John T. Lee; Brian D. Lehmann; David M. Terrian; William H. Chappell; Franca Stivala; Massimo Libra; Alberto M. Martelli; Linda S. Steelman; James A. McCubrey

Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.g., PTEN, Akt, etc) and the cell cycle (e.g., p53, p21Cip1, p27Kip1, Rb, etc.). This review focuses on the aberrant interactions of signal transduction and cell cycle genes products and how they can contribute to prostate cancer and alter therapeutic effectiveness.


Leukemia | 2006

Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells.

Fred E. Bertrand; Linda S. Steelman; William H. Chappell; Steve L. Abrams; John G. Shelton; E R White; Dale L. Ludwig; James A. McCubrey

The Insulin-like growth factor-1 receptor (IGF-1R) is overexpressed in a variety of tumors including breast, prostate and myeloma. Thus, IGF-1R and its downstream signaling effectors are good candidates for molecular-based targeted antitumor therapies. Indeed, protein inhibitors of IGF-1R signaling and IGF-1R blocking antibodies are undergoing clinical trials. Herein, the molecular basis for antibody-mediated IGF-1R signal inhibition has been investigated in a hematopoietic cell line model, FDC-P1, that has been rendered interleukin-3 independent in a ligand-dependent manner through retroviral-mediated expression of IGF-1R (FD/IGF-1R). Furthermore, the ability of an anti-IGF-1R antibody to synergize with signal-transduction pathway inhibitors and induce apoptosis was determined. The αIGF-1R antibody, A12, was capable of arresting IGF-1 or insulin-induced FD/IGF-1R cell proliferation in the G1 phase of the cell cycle and resulted in apoptotic induction. A12 effectiveness could be potentiated through combination treatment with small molecule inhibitors of the Ras/Raf/MEK/ERK or PI3K/Akt/mTOR pathways. These results validate the use of the FD/IGF-1R cells to evaluate the effectiveness and mechanisms of targeted IGF-1R therapeutic strategies.


Cell Cycle | 2007

A Dominant Role for p53-Dependent Cellular Senescence in Radiosensitization of Human Prostate Cancer Cells

Brian D. Lehmann; James A. McCubrey; Holly S. Jefferson; Matthew S. Paine; William H. Chappell; David M. Terrian

Because p53 inactivation may limit the effectiveness of radiation therapy for localized prostate cancer, it is important to understand how this gene regulates clonogenic survival after an exposure to ionizing radiation. Here, we show that premature cellular senescence is the principal mode of cell death accounting for the radiosensitivity of human prostate cancer cell lines retaining p53 function. Alternative stress response pathways controlled by this tumor suppressor, including cell cycle arrest, DNA damage repair, mitotic catastrophe and apoptosis, contributed significantly less to radiation-induced clonogenic death. Using a dominant negative C-terminal fragment of p53, we present the first evidence that a complete loss of endogenous p53 function is sufficient to limit the irradiation-induced senescence and clonogenic death of prostate cancer cells. Conversely, inheritance of wild-type p53 by prostate cancer cells lacking a functional allele of this gene (i.e., DU145) significantly increases clonogenic death through p53-dependent cellular senescence and apoptotic pathways. Our data provide evidence that mutations of even one p53 allele may be sufficient to alter their clonogenic fate. In addition, they support the idea that the p53 pathway can be used as a specific target for enhancing the radiosensitivity of prostate cancer cells. Activation of p53 by the drug nutlin-3 is shown to be an effective radiosensitizer of prostate cancer cells retaining functional alleles of p53 and this effect was entirely attributable to an increased induction of p53-dependent cellular senescence.


Cell Cycle | 2011

Involvement of Akt and mTOR in chemotherapeutic and hormonal-based drug resistance and response to radiation in breast cancer cells

Linda S. Steelman; Patrick M. Navolanic; William H. Chappell; Stephen L. Abrams; Ellis W.T. Wong; Alberto M. Martelli; Lucio Cocco; Franca Stivala; Massimo Libra; Ferdinando Nicoletti; Lyudmyla Drobot; Richard A. Franklin; James A. McCubrey

Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTEN/Akt/mTOR cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a pro-proliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21Cip-1 were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21Cip1 were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.

Collaboration


Dive into the William H. Chappell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Bäsecke

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge