Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Merigan is active.

Publication


Featured researches published by William H. Merigan.


Science Translational Medicine | 2013

In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous

Deniz Dalkara; Leah C. Byrne; Ryan R Klimczak; Meike Visel; Lu Yin; William H. Merigan; John G. Flannery; David V. Schaffer

Injection of a new gene therapy vector into the easily accessible vitreous transduced the entire retina and rescued disease phenotypes. New Eye Pod Gene therapy mediated by adeno-associated virus (AAV) vectors has been clinically successful for the treatment of certain inherited diseases of the retina—the light-sensitive structure at the back of the eye that houses the photoreceptor cells (rods and cones). These degenerative disorders arise from mutated genes that either fail to express an essential protein or express harmful proteins that drive structural breakdown, cell death, and, ultimately, blindness. Current gene therapy regimens require damaging injections of gene-carrying vectors into the space between the rod and cone photoreceptors and the retinal pigment epithelium. By this route, the genetic material is delivered to only part of the retina. Now, Dalkara et al. show that delivery of a new vector into the eye’s easily accessible vitreous humour transduces the entire retina and rescues degenerative eye disease phenotypes. The authors used in vivo–directed evolution to fashion an AAV vector that delivers wild-type versions of defective genes throughout the retina after noninjurious injection into the eye’s easily accessible vitreous humour—the gel-like liquid between the lens and the retina. The newly engineered gene therapy systems rescued disease phenotypes in two mouse models of inherited eye diseases (X-linked retinoschisis and Leber’s congenital amaurosis) and transduced photoreceptor cells in nonhuman primates when delivered via the vitreous. Development of these next-generation therapeutic “eye pods” suggests that gene therapy vectors can be designed to penetrate dense tissues, which currently constitute barriers to gene delivery. Inherited retinal degenerative diseases are a clinically promising focus of adeno-associated virus (AAV)–mediated gene therapy. These diseases arise from pathogenic mutations in mRNA transcripts expressed in the eye’s photoreceptor cells or retinal pigment epithelium (RPE), leading to cell death and structural deterioration. Because current gene delivery methods require an injurious subretinal injection to reach the photoreceptors or RPE and transduce just a fraction of the retina, they are suitable only for the treatment of rare degenerative diseases in which retinal structures remain intact. To address the need for broadly applicable gene delivery approaches, we implemented in vivo–directed evolution to engineer AAV variants that deliver the gene cargo to the outer retina after injection into the eye’s easily accessible vitreous humor. This approach has general implications for situations in which dense tissue penetration poses a barrier for gene delivery. A resulting AAV variant mediated widespread delivery to the outer retina and rescued the disease phenotypes of X-linked retinoschisis and Leber’s congenital amaurosis in corresponding mouse models. Furthermore, it enabled transduction of primate photoreceptors from the vitreous, expanding its therapeutic promise.


The Journal of Neuroscience | 1991

The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys

William H. Merigan; L. M. Katz; John H. R. Maunsell

The effects of ablating the visual pathway that passes through the parvocellular (dorsal) LGN were tested in 2 macaque monkeys by measuring acuity and both luminance and chromatic contrast sensitivity. Thresholds were tested monocularly before and after ibotenic acid was used to lesion parvocellular layers 4 and 6 of the contralateral geniculate. The injections were centered at the representation of 6 degrees in the temporal field on the horizontal meridian, and vision was tested with localized stimuli at this location. In addition, in one of the monkeys, a lesion was made in magnocellular layer 1 of the opposite geniculate, and the same thresholds were tested. Physiological and anatomical reconstructions demonstrated complete destruction of the target layers in 1 parvocellular lesions and in the magnocellular lesion, and sparing of the nontarget layers in the tested region. Parvocellular lesions caused a 3–4-fold reduction in visual acuity within the affected part of the visual field, while the magnocellular lesion did not affect acuity. Both luminance and chromatic contrast sensitivity, tested with stationary gratings of 2 c/degree, were severely reduced by parvocellular lesions, but not affected by the magnocellular lesion. However, when luminance contrast sensitivity was tested with 1 c/degree gratings, counterphase modulated at 10 Hz, it was reduced by both parvocellular and magnocellular lesions. This study demonstrates that the parvocellular pathway dominates chromatic vision, acuity, and contrast detection at low temporal and high spatial frequencies, while the magnocellular pathway may mediate contrast detection at higher temporal and lower spatial frequencies.


Vision Research | 1986

Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells

William H. Merigan; Thomas A. Eskin

Anatomical and physiological studies indicate major structural and functional differences between the two parallel retinogeniculate visual pathways in the macaque. We have examined the contribution of these pathways to achromatic visual capacities by behaviorally testing spatio-temporal vision in monkeys with severe damage to the P beta (medium cell) pathway. This loss was produced by systemic administration of a neurotoxicant, acrylamide monomer, a treatment that apparently spares other visual system neurons. Monkeys dosed with acrylamide showed large reductions of contrast sensitivity at high spatial as well as low temporal frequencies. On the other hand, they had normal sensitivity for stimuli of high temporal, low spatial frequency. In addition, dosed monkeys retained normal flicker resolution thresholds for unpatterned stimuli. These findings suggest that the medium cell retinogeniculate pathway contributes primarily to the detection of higher spatial, lower temporal frequencies, while the large cell pathway is involved primarily in sensitivity to lower spatial and higher temporal frequencies.


Optics Express | 2006

In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

Daniel C. Gray; William H. Merigan; Jessica I. Wolfing; Bernard P. Gee; Jason Porter; Alfredo Dubra; Ted Twietmeyer; Kamran Ahmad; Remy Tumbar; Fred Norbert Reinholz; David R. Williams

The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.


Visual Neuroscience | 1996

Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques.

William H. Merigan

Ibotenic acid lesions were made in four macaque monkeys in a region of cortical area V4 that corresponds to the lower quadrant of one hemifield. For visual testing, fixation locus was monitored with scleral search coils and controlled behaviorally to place test stimuli either in the lesioned quadrant or in a control location in the opposite hemifield. Some basic visual capacities were slightly altered by the lesions; there was a two-fold reduction of luminance contrast sensitivity as well as red-green chromatic contrast sensitivity, both tested with stationary gratings. On the other hand, little or no loss was found when contrast sensitivity for detection or direction discrimination was tested with 10-Hz drifting gratings nor was there a reliable change in visual acuity. Hue and luminance matching were tested with a spatially more complex matching-to-sample task, but monkeys could not learn this task in the visual field locus of a V4 lesion. If previously trained at this locus, performance was not affected by the lesion. In contrast to the small effects on basic visual capabilities, performance on two form discrimination tasks was devastated by V4 lesions. The first involved discriminating the orientation of colinear groups of dots on a background of randomly placed dots. The second involved discriminating the orientation of a group of three line segments surrounded by differently oriented line segments. Some selectivity of the deficits for form discrimination was shown by the lack of an effect of the lesions on a global motion discrimination. These results show that while V4 lesions cause only slight disruptions of basic visual capacities, they profoundly disrupt form discriminations.


Progress in Retinal and Eye Research | 2012

The susceptibility of the retina to photochemical damage from visible light.

Jennifer J. Hunter; Jessica I. W. Morgan; William H. Merigan; David H. Sliney; Janet R. Sparrow; David R. Williams

The photoreceptor/RPE complex must maintain a delicate balance between maximizing the absorption of photons for vision and retinal image quality while simultaneously minimizing the risk of photodamage when exposed to bright light. We review the recent discovery of two new effects of light exposure on the photoreceptor/RPE complex in the context of current thinking about the causes of retinal phototoxicity. These effects are autofluorescence photobleaching in which exposure to bright light reduces lipofuscin autofluorescence and, at higher light levels, RPE disruption in which the pattern of autofluorescence is permanently altered following light exposure. Both effects occur following exposure to visible light at irradiances that were previously thought to be safe. Photopigment, retinoids involved in the visual cycle, and bisretinoids in lipofuscin have been implicated as possible photosensitizers for photochemical damage. The mechanism of RPE disruption may follow either of these paths. On the other hand, autofluorescence photobleaching is likely an indicator of photooxidation of lipofuscin. The permanent changes inherent in RPE disruption might require modification of the light safety standards. AF photobleaching recovers after several hours although the mechanisms by which this occurs are not yet clear. Understanding the mechanisms of phototoxicity is all the more important given the potential for increased susceptibility in the presence of ocular diseases that affect either the visual cycle and/or lipofuscin accumulation. In addition, knowledge of photochemical mechanisms can improve our understanding of some disease processes that may be influenced by light exposure, such as some forms of Lebers congenital amaurosis, and aid in the development of new therapies. Such treatment prior to intentional light exposures, as in ophthalmic examinations or surgeries, could provide an effective preventative strategy.


Investigative Ophthalmology & Visual Science | 2009

In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic

Jessica I. W. Morgan; Alfredo Dubra; Robert Wolfe; William H. Merigan; David R. Williams

PURPOSE Retinal pigment epithelial (RPE) cells are critical for the health of the retina, especially the photoreceptors. A recent study demonstrated that individual RPE cells could be imaged in macaque in vivo by detecting autofluorescence with an adaptive optics scanning laser ophthalmoscope (AOSLO). The current study extended this method to image RPE cells in fixating humans in vivo and to quantify the RPE mosaic characteristics in the central retina of normal humans and macaques. METHODS The retina was imaged simultaneously with two light channels in a fluorescence AOSLO; one channel was used for reflectance imaging of the cones while the other detected RPE autofluorescence. The excitation light was 568 nm, and emission was detected over a 40-nm range centered at 624 nm. Reflectance frames were registered to determine interframe eye motion, the motion was corrected in the simultaneously recorded autofluorescence frames, and the autofluorescence frames were averaged to give the final RPE mosaic image. RESULTS In vivo imaging demonstrated that with increasing eccentricity, RPE cell density, and mosaic regularity decreased, whereas RPE cell size and spacing increased. Repeat measurements of the same retinal location 42 days apart showed the same RPE cells and distribution. CONCLUSIONS The RPE cell mosaic has been resolved for the first time in alert fixating human subjects in vivo using AOSLO. Mosaic analysis provides a quantitative database for studying normal and diseased RPE in vivo. This technique will allow longitudinal studies to track disease progression and assess treatment efficacy in patients and animal models of retinal disease.


Investigative Ophthalmology & Visual Science | 2011

Intravitreal injection of AAV2 transduces macaque inner retina

Lu Yin; Kenneth P. Greenberg; Jennifer J. Hunter; Deniz Dalkara; K. D. Kolstad; Benjamin Masella; Robert Wolfe; Meike Visel; Daniel Stone; Richard T. Libby; David DiLoreto; David V. Schaffer; John G. Flannery; David R. Williams; William H. Merigan

PURPOSE Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans. METHODS In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters. RESULTS AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters--human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)--AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis. CONCLUSIONS The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.


Vision Research | 1990

Spatial resolution across the macaque retina.

William H. Merigan; Laurence M. Katz

Grating acuity was measured as a function of eccentricity from the fovea in two macaques. A vertical-horizontal orientation discrimination was used to determine acuity, and the retinal locus of the test grating was controlled by training them to fixate a spot placed at various distances from the stimulus. Their head was fixed in place and fixation was monitored with a scleral search coil. The acuity of monkeys across the retina was similar to that previously measured in human subjects, reaching a peak of about 38 c/deg at the fovea, and decreasing about 10-fold by 30 deg eccentricity. Acuity was slightly higher in the temporal than in the nasal visual field. The shape of the acuity-eccentricity function suggested a dependence on cone density near the fovea, and on the density of P ganglion cells at eccentricities beyond 10 deg. Existing physiological data suggest the possibility that macaque acuity may also be limited in part by spatial averaging across the receptive field of retinal ganglion cells.


Investigative Ophthalmology & Visual Science | 2008

Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium

Jessica I. W. Morgan; Jennifer J. Hunter; Benjamin Masella; Robert Wolfe; Daniel C. Gray; William H. Merigan; François C. Delori; David R. Williams

PURPOSE Autofluorescence fundus imaging using an adaptive optics scanning laser ophthalmoscope (AOSLO) allows for imaging of individual retinal pigment epithelial (RPE) cells in vivo. In this study, the potential of retinal damage was investigated by using radiant exposure levels that are 2 to 150 times those used for routine imaging. METHODS Macaque retinas were imaged in vivo with a fluorescence AOSLO. The retina was exposed to 568- or 830-nm light for 15 minutes at various intensities over a square (1/2) degrees per side. Pre- and immediate postexposure images of the photoreceptors and RPE cells were taken over a 2 degrees field. Long-term AOSLO imaging was performed intermittently from 5 to 165 days after exposure. Exposures delivered over a uniform field were also investigated. RESULTS Exposures to 568-nm light caused an immediate decrease in autofluorescence of RPE cells. Follow-up imaging revealed either full recovery of autofluorescence or long-term damage in the RPE cells at the exposure. The outcomes of AOSLO exposures and uniform field exposures of equal average power were not significantly different. No effects from 830-nm exposures were observed. CONCLUSIONS The study revealed a novel change in RPE autofluorescence induced by 568-nm light exposure. Retinal damage occurred as a direct result of total average power, independent of the light-delivery METHOD Because the exposures were near or below permissible levels in laser safety standards, these results suggest that caution should be used with exposure of the retina to visible light and that the safety standards should be re-evaluated for these exposure conditions.

Collaboration


Dive into the William H. Merigan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Yin

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Geng

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Robert Wolfe

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge