Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Nguyen is active.

Publication


Featured researches published by William H. Nguyen.


Energy and Environmental Science | 2014

Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells

Eva L. Unger; Eric T. Hoke; Colin D. Bailie; William H. Nguyen; Andrea R. Bowring; Thomas Heumüller; Mark G. Christoforo; Michael D. McGehee

Hybrid organo-metal halide perovskites are an exciting new class of solar absorber materials and have exhibited a rapid increase in solar cell efficiencies throughout the past two years to over 17% in both meso-structured and thin-film device architectures. We observe slow transient effects causing hysteresis in the current–voltage characterization of these devices that can lead to an over- or underestimation of the solar cell device efficiency. We find that the current–voltage (IV) measurement scan direction, measurement delay time, and light and voltage bias conditions prior to measurement can all have a significant impact upon the shape of the measured IV light curves and the apparent device efficiency. We observe that hysteresis-free light IV curves can be obtained at both extremely fast and slow voltage scan rates but only in the latter case are quasi-steady-state conditions achieved for a valid power conversion efficiency measurement. Hysteretic effects are also observed in devices utilizing alternative selective contacts but differ in magnitude and time scale, suggesting that the contact interfaces have a big effect on transients in perovskite-absorber devices. The transient processes giving rise to hysteresis are consistent with a polarization response of the perovskite absorber that results in changes in the photocurrent extraction efficiency of the device. The strong dependence of the hysteresis on light and voltage biasing conditions in thin film devices for a period of time prior to the measurement suggests that photo-induced ion migration may additionally play an important role in device hysteresis. Based on these observations, we provide recommendations for correct measurement and reporting of IV curves for perovskite solar cell devices.


Journal of Physical Chemistry Letters | 2016

Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells

Rachel E. Beal; Daniel J. Slotcavage; Tomas Leijtens; Andrea R. Bowring; Rebecca A. Belisle; William H. Nguyen; George F. Burkhard; Eric T. Hoke; Michael D. McGehee

A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.


Applied Physics Letters | 2015

A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

Jonathan P. Mailoa; Colin D. Bailie; Eric Johlin; Eric T. Hoke; Austin J. Akey; William H. Nguyen; Michael D. McGehee; Tonio Buonassisi

With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.


Energy and Environmental Science | 2016

Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability

Thomas Heumueller; William R. Mateker; Andreas Distler; Urs F. Fritze; Rongrong Cheacharoen; William H. Nguyen; Markus Biele; Michael Salvador; Max von Delius; Hans-Joachim Egelhaaf; Michael D. McGehee; Christoph J. Brabec

Fullerene dimerization has been linked to short circuit current (Jsc) losses in organic solar cells comprised of certain polymer–fullerene systems. We investigate several polymer–fullerene systems, which present Jsc loss to varying degrees, in order to determine under which conditions dimerization occurs. By reintroducing dimers into fresh devices, we confirm that the photo-induced dimers are indeed the origin of the Jsc loss. We find that both film morphology and electrical bias affect the photodimerization process and thus the associated loss of Jsc. In plain fullerene films, a higher degree of crystallinity can inhibit the dimerization reaction, as observed by high performance liquid chromatography (HPLC) measurements. In blend films, the amount of dimerization depends on the degree of mixing between polymer and fullerene. For highly mixed systems with very amorphous polymers, no dimerization is observed. In solar cells with pure polymer and fullerene domains, we tune the fullerene morphology from amorphous to crystalline by thermal annealing. Similar to neat fullerene films, we observe improved light stability for devices with crystalline fullerene domains. Changing the operating conditions of the investigated solar cells from Voc to Jsc also significantly reduces the amount of dimerization-related Jsc loss; HPLC analysis of the active layer shows that more dimers are formed if the cell is held at Voc instead of Jsc. The effect of bias on dimerization, as well as a clear correlation between PL quenching and reduced dimerization upon addition of small amounts of an amorphous polymer into PC60BM films, suggests a reaction mechanism via excitons.


Physical Chemistry Chemical Physics | 2012

The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells

Thomas P. Brennan; Jonathan R. Bakke; I-Kang Ding; Brian E. Hardin; William H. Nguyen; Rajib Mondal; Colin D. Bailie; George Y. Margulis; Eric T. Hoke; Alan Sellinger; Michael D. McGehee; Stacey F. Bent

Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.


Energy and Environmental Science | 2017

Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

Rebecca A. Belisle; William H. Nguyen; Andrea R. Bowring; Philip Calado; Xiaoe Li; Stuart Irvine; Michael D. McGehee; Piers R. F. Barnes; Brian C. O'Regan

In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 × 1017 cm−3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity.


photovoltaic specialists conference | 2015

Optical loss analysis of monolithic perovskite/Si tandem solar cell

Jonathan P. Mailoa; Colin D. Bailie; Austin J. Akey; Eric T. Hoke; Eric Johlin; William H. Nguyen; Sarah E. Sofia; Michael D. McGehee; Tonio Buonassisi

Coupling perovskite and silicon solar cells in a tandem configuration is considered an attractive method to increase conversion efficiency beyond the single-junction Shockley-Queisser limit. While a mechanically-stacked perovskite/silicon tandem solar cell has been demonstrated, a method to electrically couple perovskite and silicon solar cell in a monolithic configuration has not been demonstrated. In this contribution, we design and demonstrate a working monolithic perovskite/silicon tandem solar cell, enabled by a silicon tunnel junction, with a VOC of 1.58 V. We further discuss possible efficiency loss mechanisms and mitigation strategies.


photovoltaic specialists conference | 2016

Fully inorganic cesium lead halide perovskites with improved stability for tandem solar cells

Rachel E. Beal; Daniel J. Slotcavage; Tomas Leijtens; Andrea R. Bowring; Rebecca A. Belisle; William H. Nguyen; George F. Burkhard; Eric T. Hoke; Michael D. McGehee

A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly-efficient low cost double-junction solar cells. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and while it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photo-induced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.


photovoltaic specialists conference | 2015

Mechanically stacked and monolithically integrated perovskite/silicon tandems and the challenges for high efficiency

Colin D. Bailie; Jonathan P. Mailoa; Eric Johlin; William H. Nguyen; Eric T. Hoke; Austin J. Akey; Tonio Buonassisi; Michael D. McGehee

With the advent of high-bandgap perovskites, the opportunity now exists to make tandems with perovskites on top of silicon. We have prototyped a mechanically stacked tandem, achieving 17.9% certified efficiency using a perovskite cell with a silver nanowire mesh electrode. We have also prototyped a monolithically integrated tandem on silicon, with the two subcells electronically connected by band-to-band tunneling in the silicon. The primary challenges to propelling perovskite/silicon tandems into a high-efficiency (>25%) regime are spiro-OMeTAD parasitic absorption, perovskite crystal quality, stability of a perovskite with a 1.8 eV bandgap, perovskite environmental stability, and transparent electrode quality and stability.


Journal of the American Chemical Society | 2014

Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells

William H. Nguyen; Colin D. Bailie; Eva L. Unger; Michael D. McGehee

Collaboration


Dive into the William H. Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Sellinger

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. Mailoa

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tonio Buonassisi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Austin J. Akey

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric Johlin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge