Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Orem is active.

Publication


Featured researches published by William H. Orem.


International Journal of Coal Geology | 2002

Health impacts of coal and coal use: possible solutions

Robert B. Finkelman; William H. Orem; Vincent Castranova; Calin A. Tatu; Harvey E. Belkin; Baoshan Zheng; Harry E. Lerch; Susan V Maharaj; Anne L. Bates

Abstract Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Workers Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal workers “black lung disease”.


Applied and Environmental Microbiology | 2010

Stimulation of Methane Generation from Nonproductive Coal by Addition of Nutrients or a Microbial Consortium

Elizabeth J. Jones; Mary A. Voytek; Margo D. Corum; William H. Orem

ABSTRACT Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.


Quaternary Science Reviews | 1996

AMS radiocarbon analyses from Lake Baikal, Siberia: Challanges of dating sediments from a large, oligotrophic lake

Steven M. Colman; Glenn A. Jones; Meyer Rubin; John W. King; J.A. Peck; William H. Orem

Abstract A suite of 146 new accelerator-mass spectrometer (AMS) radiocarbon ages provides the first reliable chronology for late Quaternary sediments in Lake Baikal. In this large, highly oligotrophic lake, biogenic and authigenic carbonate are absent, and plant macrofossils are extremely rare. Total organic carbon is therefore the primary material available for dating. Several problems are associated with the TOC ages. One is the mixture of carbon sources in TOC, not all of which are syndepositional in age. This problem manifests itself in apparent ages for the sediment surface that are greater than zero. However, because most of the organic carbon in Lake Baikal sediments is algal (autochthonous) in origin, this effect is limited to about 1000±500 years, which can be corrected, at least for young deposits. The other major problem with dating Lake Baikal sediments is the very low carbon contents of glacial-age deposits, which makes them extremely susceptible to contamination with modern carbon. This problem can be minimized by careful sampling and handling procedures. The ages show almost an order of magnitude difference in sediment-accumulation rates among different sedimentary environments in Lake Baikal, from about 0.04 mm/year on isolated banks such as Academician Ridge, to nearly 0.3 mm/year in the turbidite depositional areas beneath the deep basin floors, such as the Central Basin. The new AMS ages clearly indicate that the dramatic increase in diatom productivity in the lake, as evidenced by increases in biogenic silica and organic carbon, began about 13 ka, in contrast to previous estimates of 7 ka for the age of this transition. Holocene net sedimentation rates may be less than, equal to, or greater than those in the late Pleistocene, depending on the site. This variability reflects the balance between variable terrigenous sedimentation and increased biogenic sedimentation during interglaciations. The ages reported here, and the temporal and spatial variation in sedimentation rates that they imply, provide opportunities for paleoenvironmental reconstructions at different time scales and resolutions.


Environmental Science & Technology | 2012

Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

Brian A. Bergamaschi; David P. Krabbenhoft; George R. Aiken; Eduardo Patino; Darren G. Rumbold; William H. Orem

The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (±12.6) g C m–2 yr–1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ± 4.5 μg total Hg m–2 yr–1 and 3.1 ± 0.4 μg methyl Hg m–2 yr–1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters.


Geochimica et Cosmochimica Acta | 1986

Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

William H. Orem; Patrick G. Hatcher; Elliott C. Spiker; Nickolaus M. Szeverenyi; Gary E. Maciel

Abstract Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin).


Critical Reviews in Environmental Science and Technology | 2011

Sulfur in the South Florida Ecosystem: Distribution, Sources, Biogeochemistry, Impacts, and Management for Restoration

William H. Orem; Cynthia C. Gilmour; Donald M. Axelrad; David P. Krabbenhoft; Daniel Scheidt; Peter Kalla; Paul V. McCormick; Mark C. Gabriel; George R. Aiken

Sulfur is broadly recognized as a water quality issue of significance for the freshwater Florida Everglades. Roughly 60% of the remnant Everglades has surface water sulfate concentrations above 1 mg l−1, a restoration performance measure based on present sulfate levels in unenriched areas. Highly enriched marshes in the northern Everglades have average sulfate levels of 60 mg l−1. Sulfate loading to the Everglades is principally a result of land and water management in South Florida. The highest concentrations of sulfate (average 60–70 mg l−1) in the ecosystem are in canal water in the Everglades Agricultural Area (EAA). Potential sulfur sources in the watershed are many, but geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur presently used in agricultural, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment in the EAA canals. Sulfate loading to the Everglades increases microbial sulfate reduction in soils, leading to more reducing conditions, greater cycling of nutrients in soils, production of toxic sulfide, and enhanced methylmercury (MeHg) production and bioaccumulation. Wetlands are zones of naturally high MeHg production, but the combination of high atmospheric mercury deposition rates in South Florida and elevated sulfate loading leads to increased MeHg production and MeHg risk to Everglades wildlife and human consumers. Sulfate from the EAA drainage canals penetrates deep into the Everglades Water Conservation Areas, and may extend into Everglades National Park. Present plans to restore sheet flow and to deliver more water to the Everglades may increase overall sulfur loads to the ecosystem, and move sulfate-enriched water further south. However, water management practices that minimize soil drying and rewetting cycles can mitigate sulfate release during soil oxidation. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention could help achieve reduced sulfate loads to the Everglades, with resulting benefits.


Organic Geochemistry | 1996

Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia

William H. Orem; Sandra G. Neuzil; Harry E. Lerch; C. Blaine Cecil

Abstract Experimental coalification of a peat sample and a buried wood sample from domed peat deposits in Indonesia was carried out to examine chemical structural changes in organic matter during early-stage coalification. The experiment (125°C, 408 atm lithostatic pressure, and 177 atm fluid pressure for 75 days) was designed to maintain both lithostatic and fluid pressure on the sample, but allow by-products that may retard coalification to escape. We refer to this design as a geologically open system. Changes in the elemental composition, and 13 C NMR and FTIR spectra of the peat and wood after experimental coalification suggest preferential thermal decomposition of O-containing aliphatic organic compounds (probably cellulose) during early-stage coalification. The elemental compositions and 13 C NMR spectra of the experimentally coalified peat and wood were generally similar to those of Miocene coal and coalified wood samples from Indonesia. Yields of lignin phenols in the peat and wood samples decreased following experimental coalification; the wood sample exhibited a larger change. Lignin phenol yields from the experimentally coalified peat and wood were comparable to yields of lignin phenols from Miocene Indoesian lignite and coalified wood. Changes in syringyl/vanillyl and p -hydroxy/vanillyl ratios suggest direct demethoxylation as a secondary process to demethylation of methoxyl groups during early coalification, and changes in lignin phenol yields and acid/aldehyde ratios point to a coupling between demethoxylation processes and reactions in the alkyl side chain bonds of the α-carbon in lignin phenols.


International Journal of Coal Geology | 1999

A possible link between Balkan endemic nephropathy and the leaching of toxic organic compounds from Pliocene lignite by groundwater: preliminary investigation

William H. Orem; Gerald L. Feder; Robert B. Finkelman

Abstract Balkan endemic nephropathy (BEN) is a fatal kidney disease that is known to occur only in clusters of villages in alluvial valleys of tributaries of the Danube River in Bulgaria, Romania, Yugoslavia, Bosnia, and Croatia. The confinement of this disease to a specific geographic area has led to speculation that an environmental factor may be involved in the etiology of BEN. Numerous environmental factors have been suggested as causative agents for producing BEN, including toxic metals in drinking water, metal deficiency in soils of BEN areas, and environmental mycotoxins to name a few. These hypotheses have either been disproved or have failed to conclusively demonstrate a connection to the etiology of BEN, or the clustering of BEN villages. In previous work, we observed a distinct geographic relationship between the distribution of Pliocene lignites in the Balkans and BEN villages. We hypothesized that the long-term consumption of well water containing toxic organic compounds derived from the leaching of nearby Pliocene lignites by groundwater was a primary factor in the etiology of BEN. In our current work, chemical analysis using 13 C nuclear magnetic resonance ( 13 C NMR ) spectroscopy indicated a high degree of organic functionality in Pliocene lignite from the Balkans, and suggested that groundwater can readily leach organic matter from these coal beds. Semi-quantitative gas chromatography/mass spectroscopy analysis of solvent extracts of groundwater from shallow wells in BEN villages indicated the presence of potentially toxic aromatic compounds, such as napthalene, fluorene, phenanthrene, and pyrene at concentrations in the ppb range. Laboratory leaching of Balkan Pliocene lignites with distilled water yielded soluble organic matter (>500 MW) containing large amounts of aromatic structures similar to the simple/discrete aromatic compounds detected in well water from BEN villages. These preliminary results are permissive of our hypothesis and suggest that further work on the possible relationship between the etiology of BEN and toxic aromatic substances leached from Pliocene lignites in well water is warranted.


Critical Reviews in Environmental Science and Technology | 2011

Dissolved Organic Matter in the Florida Everglades: Implications for Ecosystem Restoration

George R. Aiken; Cynthia C. Gilmour; David P. Krabbenhoft; William H. Orem

Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts.


Hydrobiologia | 2002

Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

Roy A. Schroeder; William H. Orem; Yousif K. Kharaka

The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

Collaboration


Dive into the William H. Orem's collaboration.

Top Co-Authors

Avatar

Harry E. Lerch

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Calin A. Tatu

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Anne L. Bates

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David P. Krabbenhoft

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Margo D. Corum

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

George R. Aiken

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Matthew S. Varonka

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Jones

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Bunnell

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge