William Hennah
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Hennah.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Weidong Li; Ying Zhou; James David Jentsch; Robert Brown; Xiaoli Tian; Dan Ehninger; William Hennah; Leena Peltonen; Jan-Erik Lönnqvist; Matti O. Huttunen; Jaakko Kaprio; Joshua T. Trachtenberg; Alcino J. Silva; Tyrone D. Cannon
Disrupted-in-schizophrenia 1 (DISC1) was initially discovered through a balanced translocation (1;11)(q42.1;q14.3) that results in loss of the C terminus of the DISC1 protein, a region that is thought to play an important role in brain development. Here, we use an inducible and reversible transgenic system to demonstrate that early postnatal, but not adult induction, of a C-terminal portion of DISC1 in mice results in a cluster of schizophrenia-related phenotypes, including reduced hippocampal dendritic complexity, depressive-like traits, abnormal spatial working memory, and reduced sociability. Accordingly, we report that individuals in a discordant twin sample with a DISC1 haplotype, associating with schizophrenia as well as working memory impairments and reduced gray matter density, were more likely to show deficits in sociability than those without the haplotype. Our findings demonstrate that alterations in DISC1 function during brain development contribute to schizophrenia pathogenesis.
Molecular Psychiatry | 2004
Jesper Ekelund; William Hennah; Tero Hiekkalinna; A Parker; J Meyer; Jouko Lönnqvist; Leena Peltonen
Chromosome 1q has been implicated in the etiology of schizophrenia in several independent studies. However, the peak linkage findings have been dispersed over a large chromosomal region, with negative findings in this region also being reported. Our group has previously observed linkage on chromosome 1q42, maximizing within the DISC1 gene, which has also been implied in the etiology of schizophrenia based on functional studies. In the study presented here, we genotyped 300 polymorphic markers on chromosome 1 using a study sample of 70 families with multiple individuals affected with schizophrenia or related conditions, independent of the study samples in our previous reports. We again found evidence for linkage on 1q42 maximizing within the DISC1 gene (rs1000731, lod=2.70). Further, a haplotype containing the most strongly linked markers showed some evidence of association with the disease. This replicates the previous linkage finding in the same region and constitutes supportive evidence for a susceptibility gene in this region.
Molecular Psychiatry | 2005
William Hennah; Annamari Tuulio-Henriksson; Tiina Paunio; Jesper Ekelund; Teppo Varilo; Timo Partonen; Tyrone D. Cannon; Jouko Lönnqvist; Leena Peltonen
We have previously reported evidence of linkage and association between markers on 1q42 and schizophrenia in a study sample of 498 multiply affected Finnish nuclear families, leading to the recent identification of four significantly associated haplotypes that specifically implicate the Translin-Associated Factor X (TRAX) and Disrupted in Schizophrenia 1 and 2 (DISC1 and DISC2) genes in the genetic etiology of schizophrenia. Previously, the DISC genes were found to be disrupted by a balanced translocation (1;11)(q42.1;q14.3) that cosegregated with schizophrenia and related disorders in a large Scottish pedigree. Interestingly, we also reported earlier suggestive linkage between endophenotypic quantitative traits of visual and verbal memory and microsatellite markers in close proximity to TRAX/DISC, on 1q41. Here, we tested if the identified allelic haplotypes of TRAX/DISC would be associated with visual and/or verbal memory function impairments that are known to aggregate with schizophrenia in families. One haplotype of DISC1, HEP3, displayed association with poorer performance on tests assessing short-term visual memory and attention. Analysis of affected and unaffected offspring separately revealed that both samples contribute to the observed association to visual working memory. These results provide genetic support to the view that the DISC1 gene contributes to sensitivity to schizophrenia and associated disturbances and affects short-term visual memory functions. This finding should stimulate studies aiming at the molecular characterization of how the specific alleles of DISC1 affect the visual memory functions and eventually participates in the development of schizophrenia.
Molecular Psychiatry | 2009
William Hennah; Pippa Thomson; Andrew McQuillin; Nick Bass; Anu Loukola; Adebayo Anjorin; Douglas Blackwood; David Curtis; Ian J. Deary; Sarah E. Harris; Erkki Isometsä; Jacob Lawrence; Jan-Erik Lönnqvist; Walter J. Muir; Aarno Palotie; Timo Partonen; Tiina Paunio; E Pylkkö; Michelle Robinson; P Soronen; Kirsi Suominen; Jaana Suvisaari; Srinivasa Thirumalai; D. St Clair; Hugh Gurling; Leena Peltonen; David J. Porteous
Disrupted in schizophrenia 1 (DISC1) has been associated with risk of schizophrenia, schizoaffective disorder, bipolar disorder, major depression, autism and Asperger syndrome, but apart from in the original translocation family, true causal variants have yet to be confirmed. Here we report a harmonized association study for DISC1 in European cohorts of schizophrenia and bipolar disorder. We identify regions of significant association, demonstrate allele frequency heterogeneity and provide preliminary evidence for modifying interplay between variants. Whereas no associations survived permutation analysis in the combined data set, significant corrected associations were observed for bipolar disorder at rs1538979 in the Finnish cohorts (uncorrected P=0.00020; corrected P=0.016; odds ratio=2.73±95% confidence interval (CI) 1.42–5.27) and at rs821577 in the London cohort (uncorrected P=0.00070; corrected P=0.040; odds ratio=1.64±95% CI 1.23–2.19). The rs821577 single nucleotide polymorphism (SNP) showed evidence for increased risk within the combined European cohorts (odds ratio=1.27±95% CI 1.07–1.51), even though significant corrected association was not detected (uncorrected P=0.0058; corrected P=0.28). After conditioning the European data set on the two risk alleles, reanalysis revealed a third significant SNP association (uncorrected P=0.00050; corrected P=0.025). This SNP showed evidence for interplay, either increasing or decreasing risk, dependent upon the presence or absence of rs1538979 or rs821577. These findings provide further support for the role of DISC1 in psychiatric illness and demonstrate the presence of locus heterogeneity, with the effect that clinically relevant genetic variants may go undetected by standard analysis of combined cohorts.
PLOS ONE | 2009
William Hennah; David J. Porteous
Background Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes. Methodology Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis. Conclusions Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways.
pacific symposium on biocomputing | 2002
Mikko Koivisto; Markus Perola; Teppo Varilo; William Hennah; Jesper Ekelund; Margus Lukk; Leena Peltonen; Esko Ukkonen; Heikki Mannila
We describe a new method for finding haplotype blocks based on the use of the minimum description length principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks, and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to the published data of Daly et al. The results are in relatively good agreement with the published results, but also show clear differences in the predicted block boundaries and their strengths. We also give results on the block structure in population isolates.
Archives of General Psychiatry | 2009
Liisa Tomppo; William Hennah; Jouko Miettunen; Marjo-Riitta Järvelin; Juha Veijola; Samuli Ripatti; Päivi Lahermo; Dirk Lichtermann; Leena Peltonen; Jesper Ekelund
CONTEXT There is an abundance of data from human genetic studies and animal models that implies a role for the disrupted in schizophrenia 1 gene (DISC1) in the etiology of schizophrenia and other major mental illnesses. OBJECTIVE To study the effect of previously identified risk alleles of DISC1 on quantitative intermediate phenotypes for psychosis in an unselected population. DESIGN We examined 41 single-nucleotide polymorphisms within DISC1 and performed tests of association with 4 quantitative phenotypes. SETTING Academic research. PARTICIPANTS Individuals from an unselected birth cohort in Finland. Originally, everyone born in the catchment area in 1966 (N = 12 058) was included in the study. Of these, 4651 (38.6%) attended the 31-year follow-up and could be included in the study. MAIN OUTCOME MEASURES Scores on 4 psychometric instruments selected to function as proxies for positive and negative aspects of psychotic disorders, including the Perceptual Aberration Scale, Revised Social Anhedonia Scale, Revised Physical Anhedonia Scale, and Schizoidia Scale by Golden and Meehl. RESULTS Carriers of the minor allele of marker rs821577 had significantly higher scores on social anhedonia (P < .001). The minor allele of marker rs821633 was strongly associated with lower scores on social anhedonia when analyzed dependent on the absence of the minor alleles of markers rs1538979 and rs821577 (P < .001). CONCLUSIONS Variants in DISC1 affect the level of social anhedonia, a cardinal symptom of schizophrenia in the general population. DISC1 might be more central to human psychological functioning than previously thought, as it seems to affect the degree to which people enjoy social interactions.
Molecular Psychiatry | 2014
David J. Porteous; Pippa A. Thomson; J. K. Millar; Kathryn L. Evans; William Hennah; Dinesh C. Soares; Shane McCarthy; W R McCombie; S. J. Clapcote; Carsten Korth; Nicholas J. Brandon; Akira Sawa; Atsushi Kamiya; J. C. Roder; Stephen M. Lawrie; Andrew M. McIntosh; D. St Clair; D. H. Blackwood
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan
Molecular Psychiatry | 2014
Pippa Thomson; Jennifer Parla; Allan F. McRae; Melissa Kramer; K Ramakrishnan; Jianchao Yao; Dinesh C. Soares; Shane McCarthy; Stewart W. Morris; L Cardone; S Cass; Elena Ghiban; William Hennah; Kathryn L. Evans; D Rebolini; J. K. Millar; Sarah E. Harris; John M. Starr; Donald J. MacIntyre; Andrew M. McIntosh; James D. Watson; Ian J. Deary; Peter M. Visscher; D. H. R. Blackwood; W R McCombie; David J. Porteous
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10−5, OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Biological Psychiatry | 2009
Jaana Wessman; Tiina Paunio; Annamari Tuulio-Henriksson; Mikko Koivisto; Timo Partonen; Jaana Suvisaari; Joni A. Turunen; Juho Wedenoja; William Hennah; Olli Pietiläinen; Jouko Lönnqvist; Heikki Mannila; Leena Peltonen
BACKGROUND While DTNBP1, DISC1, and NRG1 have been extensively studied as candidate genes of schizophrenia, results remain inconclusive. Possible explanations for this are that the genes might be relevant only to certain subtypes of the disease and/or only in certain populations. METHODS We performed unsupervised clustering of individuals from Finnish schizophrenia families, based on extensive clinical and neuropsychological data, including Structured Clinical Interview for DSM-IV (SCID) information. Families with at least one affected member with DSM-IV diagnosis of a schizophrenia spectrum psychosis were included in a register-based ascertainment. Final sample consisted of 904 individuals from 288 families. We then used the cluster phenotypes in a genetic association study of candidate genes. RESULTS A robust three-class clustering of individuals emerged: 1) psychotic disorder with mood symptoms (n = 172), 2) core schizophrenia (n = 223), and 3) absence of psychotic disorder (n = 509). One third of the individuals diagnosed with schizophrenia were assigned to cluster 1. These individuals had fewer negative and positive psychotic symptoms and cognitive deficits but more depressive symptoms than individuals in cluster 2. There was a significant association of cluster 2 cases with the DTNBP1 gene, while the DISC1 gene indicated a significant association with schizophrenia spectrum disorders based on the DSM-IV criteria. CONCLUSIONS In the Finnish population, DTNBP1 gene is associated with a schizophrenia phenotype characterized by prominent negative symptoms, generalized cognitive impairment, and few mood symptoms. Identification of genes and pathways related to schizophrenia necessitates novel definitions of disease phenotypes associated more directly with underlying biology.