William Huhn
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Huhn.
Science Advances | 2016
Thomas Theis; Gerardo X. Ortiz; Angus W. J. Logan; Kevin Claytor; Yesu Feng; William Huhn; Volker Blum; Steven J. Malcolmson; Eduard Y. Chekmenev; Qiu Wang; Warren S. Warren
More than 10,000-fold enhanced magnetic resonance signals with >20-min signal lifetimes on universal biomolecular markers. Conventional magnetic resonance (MR) faces serious sensitivity limitations which can be overcome by hyperpolarization methods, but the most common method (dynamic nuclear polarization) is complex and expensive, and applications are limited by short spin lifetimes (typically seconds) of biologically relevant molecules. We use a recently developed method, SABRE-SHEATH, to directly hyperpolarize 15N2 magnetization and long-lived 15N2 singlet spin order, with signal decay time constants of 5.8 and 23 minutes, respectively. We find >10,000-fold enhancements generating detectable nuclear MR signals that last for over an hour. 15N2-diazirines represent a class of particularly promising and versatile molecular tags, and can be incorporated into a wide range of biomolecules without significantly altering molecular function.
Journal of Physical Chemistry Letters | 2017
Stig Rune Jensen; Santanu Saha; José A. Flores-Livas; William Huhn; Volker Blum; Stefan Goedecker; Luca Frediani
Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζ quality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζ basis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here.
Solid State Sciences | 2015
Sanxi Yao; William Huhn; Michael Widom
Abstract Boron Carbide exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed phase has rhombohedral symmetry (space group R 3 ¯ m ), the enthalpy minimizing structure has lower, monoclinic, symmetry (space group Cm ). The crystallographic primitive cell consists of a 12-atom icosahedron placed at the vertex of a rhombohedral lattice, together with a 3-atom chain along the 3-fold axis. In the limit of high carbon content, approaching 20% carbon, the icosahedra are usually of type B 11 C p , where the p indicates the carbon resides on a polar site, while the chains are of type C–B–C. We establish an atomic interaction model for this composition limit, fit to density functional theory total energies, that allows us to investigate the substitutional disorder using Monte Carlo simulations augmented by multiple histogram analysis. We find that the low temperature monoclinic Cm structure disorders through a pair of phase transitions, first via a 3-state Potts-like transition to space group R 3 m , then via an Ising-like transition to the experimentally observed R 3 ¯ m symmetry. The R 3 m and Cm phases are electrically polarized, while the high temperature R 3 ¯ m phase is nonpolar.
Physical Review Materials | 2017
William Huhn; Volker Blum
We quantify the accuracy of different non-self-consistent and self-consistent spin-orbit coupling (SOC) treatments in Kohn-Sham and hybrid density functional theory by providing a band-structure benchmark set for the valence and low-lying conduction energy bands of 103 inorganic compounds, covering chemical elements up to polonium. Reference energy band structures for the PBE density functional are obtained using the full-potential (linearized) augmented plane wave code wien2k, employing its self-consistent treatment of SOC including Dirac-type
Physical Review B | 2014
William Huhn; Michael Widom; Andrew M. Cheung; G. J. Shiflet; S. Joseph Poon; John J. Lewandowski
{p}^{1/2}
Computer Physics Communications | 2018
Victor Yu; Fabiano Corsetti; Alberto García; William Huhn; Mathias Jacquelin; Weile Jia; Björn Lange; Lin Lin; Jianfeng Lu; Wenhui Mi; Ali Seifitokaldani; Alvaro Vazquez-Mayagoitia; Chao Yang; Haizhao Yang; Volker Blum
orbitals in the basis set. We use this benchmark set to benchmark a computationally simpler, non-self-consistent all-electron treatment of SOC based on scalar-relativistic orbitals and numeric atom-centered orbital basis functions. For elements up to
Sustainable Energy and Fuels | 2017
Suzanne K. Wallace; Katrine L. Svane; William Huhn; Tong Zhu; David B. Mitzi; Volker Blum; Aron Walsh
Z\ensuremath{\approx}50
Computational Materials Science | 2014
William Huhn; Michael Widom; Michael C. Gao
, both treatments agree virtually exactly. For the heaviest elements considered (Tl, Pb, Bi, Po), the band-structure changes due to SOC are captured with a relative deviation of 11% or less. For different density functionals (PBE versus the hybrid HSE06), we show that the effect of spin-orbit coupling is usually similar but can be dissimilar if the qualitative features of the predicted underlying scalar-relativistic band structures do not agree. All band structures considered in this work are available online via the NOMAD repository to aid in future benchmark studies and methods development.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2014
Michael Widom; William Huhn; Soumyadipta Maiti; Walter Steurer
Motivated by interest in the elastic properties of high-strength amorphous metals, we examine the elastic properties of select crystalline phases. Using first-principles methods, we calculate elastic moduli in various chemical systems containing transition metals, specifically early (Ta,W) and late (Co,Ni). Theoretically predicted alloy elastic properties are verified for Ni-Ta by comparison with experimental measurements using resonant ultrasound spectroscopy. Comparison of our computed elastic moduli with effective medium theories shows that alloying leads to enhancement of bulk moduli relative to averages of the pure elements and considerable deviation of predicted and computed shear moduli. Specifically, we find an enhancement of bulk modulus relative to effective medium theory and propose a candidate system for high-strength, ductile amorphous alloys. Trends in the elastic properties of chemical systems are analyzed using force constants, electronic densities of state, and crystal overlap Hamilton populations. We interpret our findings in terms of the electronic structure of the alloys.
JOM | 2013
William Huhn; Michael Widom
Abstract Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn–Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn–Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn–Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures. Program summary Program title: ELSI Interface Program Files doi: http://dx.doi.org/10.17632/y8vzhzdm62.1 Licensing provisions: BSD 3-clause Programming language: Fortran 2003, with interface to C/C++ External routines/libraries: MPI, BLAS, LAPACK, ScaLAPACK, ELPA, libOMM, PEXSI, ParMETIS, SuperLU_DIST Nature of problem: Solving the electronic structure from a generalized or standard eigenvalue problem in calculations based on Kohn–Sham density functional theory (KS-DFT). Solution method: To connect the KS-DFT codes and the KS electronic structure solvers, ELSI provides a unified software interface with reasonable default parameters, hierarchical control over the interface and the solvers, and automatic conversions between input and internal working matrix formats. Supported solvers are: ELPA (dense generalized eigensolver), libOMM (orbital minimization method), and PEXSI (pole expansion and selected inversion method). Restrictions: The ELSI interface requires complete information of the Hamiltonian matrix.