Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Bond is active.

Publication


Featured researches published by William J. Bond.


Science | 2011

Trophic Downgrading of Planet Earth

James A. Estes; John Terborgh; Justin S. Brashares; Mary E. Power; Joel Berger; William J. Bond; Stephen R. Carpenter; Timothy E. Essington; Robert D. Holt; Jeremy B. C. Jackson; Robert J. Marquis; Lauri Oksanen; Tarja Oksanen; Robert T. Paine; Ellen K. Pikitch; William J. Ripple; Stuart A. Sandin; Marten Scheffer; Thomas W. Schoener; Jonathan B. Shurin; A. R. E. Sinclair; Michael E. Soulé; Risto Virtanen; David A. Wardle

Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind’s most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.


Science | 2009

Fire in the Earth system.

David M. J. S. Bowman; Jennifer K. Balch; Paulo Artaxo; William J. Bond; Jean M. Carlson; Mark A. Cochrane; Ruth S. DeFries; John C. Doyle; Sandy P. Harrison; Fay H. Johnston; Jon E. Keeley; Meg A. Krawchuk; Christian A. Kull; J. Brad Marston; Max A. Moritz; I. Colin Prentice; Christopher I. Roos; Andrew C. Scott; Thomas W. Swetnam; Guido R. van der Werf; Stephen J. Pyne

Burn, Baby, Burn Wildfires can have dramatic and devastating effects on landscapes and human structures and are important agents in environmental transformation. Their impacts on nonanthropocentric aspects of the environment, such as ecosystems, biodiversity, carbon reserves, and climate, are often overlooked. Bowman et al. (p. 481) review what is known and what is needed to develop a holistic understanding of the role of fire in the Earth system, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes. Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.


BioScience | 1996

Challenges in the quest for keystones

Mary E. Power; David Tilman; James A. Estes; Bruce A. Menge; William J. Bond; L. Scott Mills; Gretchen C. Daily; Juan Carlos Castilla; Jane Lubchenco; Robert T. Paine

Mary E. Power is a professor in the Department of Integrative Biology, University of California, Berkeley, CA 94720. David Tilman is a professor in the Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108. James A. Estes is a wildlife biologist in the National Biological Service, Institute of Marine Science, University of California, Santa Cruz, CA 95064. Bruce A. Menge is a professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. William J. Bond is a professor doctor in the Department of Botany, University of Cape Town, Rondebosch 7700 South Africa. L. Scott Mills is an assistant professor in the Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812. Gretchen Daily is Bing Interdisciplinary Research Scientist, Department of Biological Science, Stanford University, Stanford, CA 94305. Juan Carlos Castilla is a full professor and marine biology head in Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Jane Lubchenco is a distinguished professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. Robert T. Paine is a professor in the Department of Zoology, NJ-15, University of Washington, Seattle, WA 98195. ? 1996 American Institute of Biological Sciences. A keystone species is


Journal of Applied Ecology | 1996

Fire and plants.

William J. Bond; B. W. van Wilgen

Introduction. Why and how do ecosystems burn? Surviving fires - vegetative and reproductive responses. Plant demography and fire I: Interval dependent effects. Plant demography and fire II: Event-dependent effects. Fire and the evolutionary ecology of plants. Fire, competition and the organization of communities. Fire and management. Fire and the ecology of a changing world. References. Index.


Ecology | 2003

Effects of fire and herbivory on the stability of savanna ecosystems

Frank van Langevelde; Claudius A.D.M. van de Vijver; Lalit Kumar; Johan van de Koppel; Nico de Ridder; Jelte van Andel; Andrew K. Skidmore; John W. Hearne; L. Stroosnijder; William J. Bond; Herbert H. T. Prins; Max Rietkerk

Savanna ecosystems are characterized by the co-occurrence of trees and grass- es. In this paper, we argue that the balance between trees and grasses is, to a large extent, determined by the indirect interactive effects of herbivory and fire. These effects are based on the positive feedback between fuel load (grass biomass) and fire intensity. An increase in the level of grazing leads to reduced fuel load, which makes fire less intense and, thus, less damaging to trees and, consequently, results in an increase in woody vegetation. The system then switches from a state with trees and grasses to a state with solely trees. Similarly, browsers may enhance the effect of fire on trees because they reduce woody biomass, thus indirectly stimulating grass growth. This consequent increase in fuel load results in more intense fire and increased decline of biomass. The system then switches from a state with solely trees to a state with trees and grasses. We maintain that the interaction between fire and herbivory provides a mechanistic explanation for observed discontinuous changes in woody and grass biomass. This is an alternative for the soil degradation mechanism, in which there is a positive feedback between the amount of grass biomass and the amount of water that infiltrates into the soil. The soil degradation mechanism predicts no discontinuous chang- es, such as bush encroachment, on sandy soils. Such changes, however, are frequently ob- served. Therefore, the interactive effects of fire and herbivory provide a more plausible explanation for the occurrence of discontinuous changes in savanna ecosystems.


Science | 2010

The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science

Erika J. Edwards; Colin P. Osborne; Caroline A.E. Strömberg; Stephen A. Smith; William J. Bond; Pascal-Antoine Christin; Asaph B. Cousins; Melvin R. Duvall; David L. Fox; Robert P. Freckleton; James Hartwell; Yongsong Huang; Christine M. Janis; Jon E. Keeley; Elizabeth A. Kellogg; Alan K. Knapp; Andrew D. B. Leakey; David M. Nelson; Jeffery M. Saarela; Rowan F. Sage; Osvaldo E. Sala; Nicolas Salamin; Christopher J. Still; Brett J. Tipple

Grassland Emergence The evolution of the C4 photosynthetic pathway from the ancestral C3 pathway in grasses led to the establishment of grasslands in warm climates during the Late Miocene (8 to 3 million years ago). This was a major event in plant evolutionary history, and their high rates of foliage production sustained high levels of herbivore consumption. The past decade has seen significant advances in understanding C4 grassland ecosystem ecology, and now a wealth of data on the geological history of these ecosystems has accumulated and the phylogeny of grasses is much better known. Edwards et al. (p. 587) review this multidisciplinary research area and attempt to synthesize emerging knowledge about the evolution of grass species within the context of plant and ecosystem ecology. The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.


Journal of Biogeography | 2011

The human dimension of fire regimes on Earth

David M. J. S. Bowman; Jennifer K. Balch; Paulo Artaxo; William J. Bond; Mark A. Cochrane; Carla M. D'Antonio; Ruth S. DeFries; Fay H. Johnston; Jon E. Keeley; Meg A. Krawchuk; Christian A. Kull; Michelle C. Mack; Max A. Moritz; Stephen J. Pyne; Christopher I. Roos; Andrew C. Scott; Navjot S. Sodhi; Thomas W. Swetnam; Robert J. Whittaker

Humans and their ancestors are unique in being a fire-making species, but ‘natural’ (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from ‘natural’ background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.


Trends in Plant Science | 2011

Fire as an evolutionary pressure shaping plant traits

Jon E. Keeley; Juli G. Pausas; Philip W. Rundel; William J. Bond; Ross A. Bradstock

Traits, such as resprouting, serotiny and germination by heat and smoke, are adaptive in fire-prone environments. However, plants are not adapted to fire per se but to fire regimes. Species can be threatened when humans alter the regime, often by increasing or decreasing fire frequency. Fire-adaptive traits are potentially the result of different evolutionary pathways. Distinguishing between traits that are adaptations originating in response to fire or exaptations originating in response to other factors might not always be possible. However, fire has been a factor throughout the history of land-plant evolution and is not strictly a Neogene phenomenon. Mesozoic fossils show evidence of fire-adaptive traits and, in some lineages, these might have persisted to the present as fire adaptations.


Ecology | 2007

EFFECTS OF FOUR DECADES OF FIRE MANIPULATION ON WOODY VEGETATION STRUCTURE IN SAVANNA

Steven I. Higgins; William J. Bond; Edmund C. February; Andries Bronn; Douglas I. W. Euston-Brown; Beukes Enslin; Navashni Govender; Louise Rademan; Sean O'Regan; A.L.F. Potgieter; Simon Scheiter; Richard Sowry; Lynn Trollope; W.S.W. Trollope

The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.


Ecological Applications | 2005

SHAPING THE LANDSCAPE: FIRE–GRAZER INTERACTIONS IN AN AFRICAN SAVANNA

S. Archibald; William J. Bond; William D. Stock; D. H. K. Fairbanks

The effects of fire–grazing interactions on grass communities are difficult to identify because fire and grazing influence each other on a landscape scale. Persistent heavy grazing can prevent the spread of fire by breaking up the grass layer. In contrast, frequent burning might inhibit the persistence of grazed patches by attracting grazers to the post-burn green flush. We explored the effect of burning on grazing activity, and the persistence of grazed patches, in a landscape-level experiment in a South African savanna. We created 17 grazed patches by mowing grass in a 20 m diameter plot, with an adjacent un-mown control. We used dung counts as a measure of grazer visitation, and grass height as a measure of grazing intensity, at each of the sites over a year. Nearly all mowing treatments resulted in a rapid increase in grazing activity relative to controls (on average, 4–6 times more dung was found on mown sites). Subsequent fates of the grazed patches depended on their location with respect to fire. Burned areas drew animals off nearby unburned grazed patches, which then recovered lost biomass. Patches >1.5 km from burns remained grazed short. Frequent large fires might prevent areas of heavy grazing from persisting in the landscape, and thus limit the spread of grazing-adapted grasses. Spatial information on fire frequencies in the park was used to explore the influence that the “magnet effect” of fire can have on grass communities. We mapped the distribution of tall, bunch grasslands and grazing-lawn grasslands using a 1999 Landsat TM satellite image. The extent of grazing lawns was directly related to fire return interval. Areas with a fire return of <4 years had less lawn grass than would be expected from the proportions of lawn grass in the park. A logistic regression analysis, which used various environmental variables known to influence grazing, showed fire history to be an important predictor of grazing-lawn distributions. This work shows that, by influencing where, when, and for how long animals graze a patch, fire can influence the competitive balance between grazing-tolerant, and grazing-intolerant grass species and affect their distributions in the landscape. We discuss the implications of this research for the management of natural grazing systems and rangelands.

Collaboration


Dive into the William J. Bond's collaboration.

Top Co-Authors

Avatar

Jon E. Keeley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Juli G. Pausas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy F. Midgley

Conservation International

View shared research outputs
Top Co-Authors

Avatar

Ross A. Bradstock

National Parks and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Archibald

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge