William J. Bruno
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William J. Bruno.
Bioinformatics | 2001
Ian Holmes; William J. Bruno
MOTIVATION We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol., 33, 114-124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. METHODS We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al., 1999, Nucleic Acids Res., 27, 2682-2690). RESULTS We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al., 1994, Nucleic Acids Res., 22, 4673-4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. AVAILABILITY The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html).
Journal of Bacteriology | 2006
João Paulo Gomes; Alexandra Nunes; William J. Bruno; Maria José Borrego; Carlos Florindo; Deborah Dean
Chlamydia trachomatis is an intracellular bacterium responsible for ocular, respiratory, and sexually transmitted diseases. The genome contains a nine-member polymorphic membrane protein (Pmp) family unique to members of the order Chlamydiales. Genomic and molecular analyses were performed for the entire pmp gene family for the 18 reference serological variants (serovars) and genovariant Ja to identify specific gene and protein regions that differentiate chlamydial disease groups. The mean genetic distance among all serovars varied from 0.1% for pmpA to 7.0% for pmpF. Lymphogranuloma venereum (LGV) serovars were the most closely related for the pmp genes and were also the most divergent, compared to ocular and non-LGV urogenital disease groups. Phylogenetic reconstructions showed that for six of nine pmp genes (not pmpA, pmpD, or pmpE), the serovars clustered based on tissue tropism. The most globally successful serovars, E and F, clustered distantly from the urogenital group for five pmp genes. These pmp genes may confer a biologic advantage that may facilitate infection and transmission for E and F. Surprisingly, serovar Da clustered with the ocular group from pmpE to pmpI, which are located together in the chromosome, providing statistically significant evidence for intergenomic recombination and acquisition of a genetic composition that could hypothetically expand the host cell range of serovar Da. We also identified distinct domains for pmpE, pmpF, and pmpH where substitutions were concentrated and associated with a specific disease group. Thus, our data suggest a possible structural or functional role that may vary among pmp genes in promoting antigenic polymorphisms and/or diverse adhesions-receptors that may be involved in immune evasion and differential tissue tropism.
In: Speed, TP and Waterman, MS, (eds.) Genetic mapping and DNA sequencing. (pp. 133-154). Springer (1996) | 1996
D. J. Balding; William J. Bruno; David C. Torney; Emanuel Knill
. .. •• • •• • • •• •• . .. . ........ • .. . . . • •• - .. • • • •• .. . . ... • • .... .. ...... • • ••••• • • ... . ... . .. . .. . .. . ..... . .. • . . . ... .. .. • ••• • •• • . .. .. . .... . .... • • • . . . .. . .. .. ... . ... . ......... . • • •• • . . . .. · .... · . • ... . ... .. .. .. . . .... ..... .. ... • • • • • ... . . .. . ••• ..... -... .. . .. - ••••••••••• .. • ••••••• ••••••••••••••••••••
Journal of Bacteriology | 2004
João Paulo Gomes; William J. Bruno; Maria José Borrego; Deborah Dean
Genome sequencing of Chlamydia trachomatis serovar D has identified polymorphic membrane proteins (Pmp) that are a newly recognized protein family unique to the Chlamydiaceae family. Cumulative data suggest that these diverse proteins are expressed on the cell surface and might be immunologically important. We performed phylogenetic analyses and statistical modeling with 18 reference serovars and 1 genovariant of C. trachomatis to examine the evolutionary characteristics and comparative genetics of PmpC and pmpC, the gene that encodes this protein. We also examined 12 recently isolated ocular and urogenital clinical samples, since reference serovars are laboratory adapted and may not represent strains that are presently responsible for human disease. Phylogenetic reconstructions revealed a clear distinction for disease groups, corresponding to levels of tissue specificity and virulence of the organism. Further, the most prevalent serovars, E, F, and Da, formed a distinct clade. According to the results of comparative genetic analyses, these three genital serovars contained two putative insertion sequence (IS)-like elements with 10- and 15-bp direct repeats, respectively, while all other genital serovars contained one IS-like element. Ocular trachoma serovars also contained both insertions. Previously, no IS-like elements have been identified for Chlamydiaceae. Surprisingly, 7 (58%) of 12 clinical isolates revealed pmpC sequences that were identical to the sequences of other serovars, providing clear evidence for a high rate of whole-gene recombination. Recombination and the differential presence of IS-like elements among distinct disease and prevalence groups may contribute to genome plasticity, which may lead to adaptive changes in tissue tropism and pathogenesis over the course of the organisms evolution.
Emerging Infectious Diseases | 2009
Deborah Dean; William J. Bruno; Raymond Wan; João Paulo Gomes; Stéphanie Devignot; Tigist Mehari; Henry J. C. de Vries; Servaas A. Morré; Garry Myers; Timothy D. Read; Brian G. Spratt
Single nucleotide polymorphisms can be used for epidemiologic and evolutionary studies worldwide.
Journal of Virology | 2007
Irina Maljkovic Berry; Ruy M. Ribeiro; Moulik Kothari; Gayathri Athreya; Marcus Daniels; Ha Youn Lee; William J. Bruno; Thomas Leitner
ABSTRACT HIV-1 sequences in intravenous drug user (IDU) networks are highly homogenous even after several years, while this is not observed in most sexual epidemics. To address this disparity, we examined the human immunodeficiency virus type 1 (HIV-1) evolutionary rate on the population level for IDU and heterosexual transmissions. All available HIV-1 env V3 sequences from IDU outbreaks and heterosexual epidemics with known sampling dates were collected from the Los Alamos HIV sequence database. Evolutionary rates were calculated using phylogenetic trees with a t test root optimization of dated samples. The evolutionary rate of HIV-1 subtype A1 was found to be 8.4 times lower in fast spread among IDUs in the former Soviet Union (FSU) than in slow spread among heterosexual individuals in Africa. Mixed epidemics (IDU and heterosexual) showed intermediate evolutionary rates, indicating a combination of fast- and slow-spread patterns. Hence, if transmissions occur repeatedly during the initial stage of host infection, before selective pressures of the immune system have much impact, the rate of HIV-1 evolution on the population level will decrease. Conversely, in slow spread, where HIV-1 evolves under the pressure of the immune system before a donor infects a recipient, the virus evolution at the population level will increase. Epidemiological modeling confirmed that the evolutionary rate of HIV-1 depends on the rate of spread and predicted that the HIV-1 evolutionary rate in a fast-spreading epidemic, e.g., for IDUs in the FSU, will increase as the population becomes saturated with infections and the virus starts to spread to other risk groups.
Journal of Molecular Evolution | 2004
Bas E. Dutilh; Martijn A. Huynen; William J. Bruno; Berend Snel
Phylogenetic trees based on gene repertoires are remarkably similar to the current consensus of life history. Yet it has been argued that shared gene content is unreliable for phylogenetic reconstruction because of convergence in gene content due to horizontal gene transfer and parallel gene loss. Here we test this argument, by filtering out as noise those orthologous groups that have an inconsistent phylogenetic distribution, using two independent methods. The resulting phylogenies do indeed contain small but significant improvements. More importantly, we find that the majority of orthologous groups contain some phylogenetic signal and that the resulting phylogeny is the only detectable signal present in the gene distribution across genomes. Horizontal gene transfer or parallel gene loss does not cause systematic biases in the gene content tree.
Chaos | 1992
John E. Pearson; William J. Bruno
A general N+Q component reaction-diffusion system is analyzed with regard to pattern forming instabilities (Turing bifurcations). The system consists of N mobile species and Q immobile species. The Q immobile species form in response to reactions between the N mobile species and an immobile substrate and allow the Turing instability to occur. These results are valid both for bifurcations from a spatially uniform state and for systems with an externally imposed gradient as in the experimental systems in which Turing patterns have been observed. It is shown that the critical wave number and the location of the instability in parameter space are independent of the substrate concentration. It is also found that the system necessarily undergoes a Hopf bifurcation as the total substrate concentration is decreased. Further, in the case that all the mobile species diffuse at identical rates we show that if the full system is at a point of Turing bifurcation then the N component mobile subsystem is at transition from an unstable focus to an unstable node, and the critical wave number is simply related to the degenerate positive eigenvalue of the mobile subsystem. A sequence of bifurcations that occur in the eigenspectra as the total substrate concentration is decreased to zero is also discussed.
Discrete Applied Mathematics | 1998
Emanuel Knill; William J. Bruno; David C. Torney
Abstract In group testing, the task is to determine the distinguished members of a set of objects O by asking subset queries of the form “does the set Q⊂- O contain a distinguished object?” In biological applications of group testing, the task is to repeatedly screen a library of objects for those which are positive for a probe. The subset queries consist of screening a pooled subset of the objects with the probe. This procedure has become an important component of the experimental methods used for the compilation of physical maps of chromosomes and other genetic material. For many screening applications, it is most cost-effective to ask many subset queries in parallel. This leads to non-adaptive group testing problems. An important aspect of most screening environments is that the screening results are far from reliable. In this report we discuss some of the error models that can be used and show how they affect the design of non-adaptive screening experiments. We give a unified treatment of the known methods for constructing pooling designs, provide explicit formulas for their performance under different error assumptions and discuss the asymptotic performance of random designs.
BMC Research Notes | 2012
Joel Berendzen; William J. Bruno; Judith D. Cohn; Nicolas W. Hengartner; Cheryl R. Kuske; Benjamin H. McMahon; Murray Wolinsky; Gary Xie
BackgroundClassification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers.ResultsAt even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read) at the most specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods based on BLASTX against the NR database.ConclusionsClassification by exact matching against a precomputed list of signature peptides provides comparable results to existing techniques for reads longer than about 300 bp and does not degrade severely with shorter reads. Orders of magnitude faster than existing methods, the approach is suitable now for inclusion in analysis pipelines and appears to be extensible in several different directions.