Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Fisk is active.

Publication


Featured researches published by William J. Fisk.


Indoor Air | 2015

Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making

Randy L. Maddalena; Mark J. Mendell; K. Eliseeva; Wanyu R. Chan; Douglas P. Sullivan; Marion Russell; U. Satish; William J. Fisk

UNLABELLED Ventilation rates (VRs) in buildings must adequately control indoor levels of pollutants; however, VRs are constrained by the energy costs. Experiments in a simulated office assessed the effects of VR per occupant on perceived air quality (PAQ), Sick Building Syndrome (SBS) symptoms, and decision-making performance. A parallel set of experiments assessed the effects of VR per unit floor area on the same outcomes. Sixteen blinded healthy young adult subjects participated in each study. Each exposure lasted four hours and each subject experienced two conditions in a within-subject study design. The order of presentation of test conditions, day of testing, and gender were balanced. Temperature, relative humidity, VRs, and concentrations of pollutants were monitored. Online surveys assessed PAQ and SBS symptoms and a validated computer-based tool measured decision-making performance. Neither changing the VR per person nor changing the VR per floor area, had consistent statistically significant effects on PAQ or SBS symptoms. However, reductions in either occupant-based VR or floor-area-based VR had a significant and independent negative impact on most decision-making measures. These results indicate that the changes in VR employed in the study influence performance of healthy young adults even when PAQ and SBS symptoms are unaffected. PRACTICAL IMPLICATIONS The study results indicate the importance of avoiding low VRs per person and low VRs per floor area to minimize decrements in cognitive performance.


Indoor Air | 2012

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California

Deborah H. Bennett; William J. Fisk; Michael G. Apte; Xiangmei Wu; Amber Trout; David Faulkner; Douglas P. Sullivan

UNLABELLED This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the countrys energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.


Indoor Air | 2016

Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores

Wanyu R. Chan; S. Parthasarathy; William J. Fisk; Thomas E. McKone

We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non-fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability-adjusted life years (DALYs) to account for both cancer and non-cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered.


Indoor Air | 2017

Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires.

William J. Fisk; Wanyu R. Chan

Increases in hospital admissions and deaths are associated with increases in outdoor air particles during wildfires. This analysis estimates the health benefits expected if interventions had improved particle filtration in homes in Southern California during a 10-day period of wildfire smoke exposure. Economic benefits and intervention costs are also estimated. The six interventions implemented in all affected houses are projected to prevent 11% to 63% of the hospital admissions and 7% to 39% of the deaths attributable to wildfire particles. The fraction of the population with an admission attributable to wildfire smoke is small, thus, the costs of interventions in all homes far exceeds the economic benefits of reduced hospital admissions. However, the estimated economic value of the prevented deaths exceed or far exceed intervention costs for interventions that do not use portable air cleaners. For the interventions with portable air cleaner use, mortality-related economic benefits exceed intervention costs as long as the cost of the air cleaners, which have a multi-year life, are not attributed to the short wildfire period. Cost effectiveness is improved by intervening only in the homes of the elderly who experience most of the health effects of particles from wildfires.


Other Information: PBD: 11 Oct 2001 | 2001

Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

Michael G. Apte; Woody Delp; Richard C. Diamond; Alfred T. Hodgson; Satish Kumar; Leo Rainer; Derek G. Shendell; Doug P. Sullivan; William J. Fisk

It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.


Indoor Air | 2015

Contaminant levels, source strengths, and ventilation rates in California retail stores

Wanyu R. Chan; Sebastian Cohn; Meera Sidheswaran; Douglas P. Sullivan; William J. Fisk

UNLABELLED This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of Californias Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below Californias stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. PRACTICAL IMPLICATIONS Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important.


Other Information: PBD: 22 May 2003 | 2003

Simultaneous Energy Savings and IEQ Improvements in Relocatable Classrooms

Michael G. Apte; D.L. DiBartolomeo; Toshi Hotchi; Alfred T. Hodgson; Seung-Min Lee; Shawna M. Liff; Leo Rainer; Derek G. Shendell; Doug P. Sullivan; William J. Fisk

Relocatable classrooms (RCs) are commonly used by school districts with changing demographics and enrollment sizes. We designed and constructed four energy-efficient RCs for this study to demonstrate technologies with the potential to simultaneously improve energy efficiency and indoor environmental quality (IEQ). Two were installed at each of two school districts, and energy use and IEQ parameters were monitored during occupancy. Two RCs (one per school) were finished with materials selected for reduced emissions of toxic and odorous volatile organic compounds (VOCs). Each had two HVAC systems, operated on alternate weeks, consisting of a standard heat-pump system and an indirect-direct evaporative cooling (IDEC) system with gas-fired hydronic heating. The IDEC system provides continuous outside air ventilation at {sup 3}15 CFM (7.5 L s-1) person-1, efficient particle filtration while using significantly less energy for cooling. School year long measurements included: carbon dioxide (CO2), particles, VOCs, temperature, humidity, thermal comfort, noise, meteorology, and energy use. IEQ monitoring results indicate that important ventilation-relevant indoor CO2 and health-relevant VOC concentration reductions were achieved while average cooling and heating energy costs were simultaneously reduced by 50 percent and 30 percent, respectively.


Other Information: PBD: 1 Feb 2002 | 2002

The role of emerging energy-efficient technology in promoting workplace productivity and health: Final report

Satish Kumar; William J. Fisk

The objective of this particular Indoor Health and Productivity (IHP) project is to improve the communication of research findings in the indoor health and productivity area to scientists and building professionals (e.g. architects and engineers) and, thus, to help stimulate implementation of existing knowledge.


Other Information: PBD: 1 Oct 2002 | 2002

Measuring rates of outdoor airflow into HVAC systems

William J. Fisk; David Faulkner; Douglas P. Sullivan; Woody Delp

During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.


Indoor Air | 2018

How home ventilation rates affect health: A literature review

William J. Fisk

This paper reviews studies of the relationships between ventilation rates (VRs) in homes and occupant health, primarily respiratory health. Five cross-sectional studies, seven case-control studies, and eight intervention studies met inclusion criteria. Nearly all studies controlled for a range of potential confounders and most intervention studies included placebo conditions. Just over half of studies reported one or more statistically significant (SS) health benefits of increased VRs. Wheeze was most clearly associated with VR. No health outcomes had SS associations with VRs in the majority of statistical tests. Most studies that reported SS health benefits from increased VRs also had additional health outcomes that did not improve with increased VRs. Overall, the number of SS improvements in health with increased VRs exceeded the anticipated chance improvements by approximately a factor of seven. The magnitude of the improvements in health outcomes with increased VRs ranged from 20% to several-fold improvements. In summary, the available research indicates a tendency for improvements in respiratory health with increased home VRs; however, health benefits do not occur consistently and other exposure control measures should be used together with ventilation. The research did not enable identification of a threshold VR below which adverse health effects occur.

Collaboration


Dive into the William J. Fisk's collaboration.

Top Co-Authors

Avatar

Douglas P. Sullivan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Faulkner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark J. Mendell

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Olli Seppänen

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alfred T. Hodgson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wanyu R. Chan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael G. Apte

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard C. Diamond

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bradley H. Turk

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D.L. DiBartolomeo

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge