Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Pitz is active.

Publication


Featured researches published by William J. Pitz.


Combustion and Flame | 1998

A comprehensive modeling study of n-heptane oxidation

Henry J. Curran; P. Gaffuri; William J. Pitz; Charles K. Westbrook

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines. Over the series of experiments numerically investigated, the initial pressure ranged from 1–42 atm, the temperature from 550–1700 K, the equivalence ratio from 0.3–1.5, and nitrogen-argon dilution from 70–99%. The combination of ignition delay time and species composition data provide for a stringent test of the chemical kinetic mechanism. The reactions are classed into various types, and the reaction rate constants are given together with an explanation of how the rate constants were obtained. Experimental results from the literature of ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at both low and high temperatures. Additionally, species composition data from a variable pressure flow reactor and a jet-stirred reactor were used to help complement and refine the low-temperature portions of the reaction mechanism. A sensitivity analysis was performed for each of the combustion environments. This analysis showed that the low-temperature chemistry is very sensitive to the formation of stable olefin species from hydroperoxy-alkyl radicals and to the chain-branching steps involving ketohydroperoxide molecules.


Combustion and Flame | 2002

A Comprehensive Modeling Study of iso-Octane Oxidation

Henry J. Curran; P. Gaffuri; William J. Pitz; Charles K. Westbrook

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of iso-octane in a jet-stirred reactor, flow reactors, shock tubes and in a motored engine. Over the series of experiments investigated, the initial pressure ranged from 1 to 45 atm, the temperature from 550 K to 1700 K, the equivalence ratio from 0.3 to 1.5, with nitrogen-argon dilution from 70% to 99%. This range of physical conditions, together with the measurements of ignition delay time and concentrations, provide a broad-ranging test of the chemical kinetic mechanism. This mechanism was based on our previous modeling of alkane combustion and, in particular, on our study of the oxidation of n-heptane. Experimental results of ignition behind reflected shock waves were used to develop and validate the predictive capability of the reaction mechanism at both low and high temperatures. Moreover, species’ concentrations from flow reactors and a jet-stirred reactor were used to help complement and refine the low and intermediate temperature portions of the reaction mechanism, leading to good predictions of intermediate products in most cases. In addition, a sensitivity analysis was performed for each of the combustion environments in an attempt to identify the most important reactions under the relevant conditions of study.


Combustion and Flame | 1998

Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame

Nick M. Marinov; William J. Pitz; Charles K. Westbrook; Antonio M. Vincitore; Marco J. Castaldi; Selim Senkan; Carl F. Melius

Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane–oxygen–argon burner stabilized flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.6 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer technique. Measurements were made in the main reaction and post-reaction zones for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-fused aromatic rings. Reaction flux and sensitivity analysis were used to help identify the important reaction sequences leading to aromatic and PAH growth and destruction in the n-butane flame. Reaction flux analysis showed the propargyl recombination reaction was the dominant pathway to benzene formation. The consumption of propargyl by H atoms was shown to limit propargyl, benzene, and naphthalene formation in flames as exhibited by the large negative sensitivity coefficients. Naphthalene and phenanthrene production was shown to be plausibly formed through reactions involving resonantly stabilized cyclopentadienyl and indenyl radicals. Many of the low molecular weight aliphatics, combustion by-products, aromatics, branched aromatics, and PAHs were fairly well simulated by the model. Additional work is required to understand the formation mechanisms of phenyl acetylene, pyrene, and fluoranthene in the n-butane flame.


Combustion Science and Technology | 1996

Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames

Nick M. Marinov; William J. Pitz; Charles K. Westbrook; Marco J. Castaldi; Selim Senkan

Detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in rich, sooting, methane and ethane premixed flames. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph / mass spectrometer technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon formation primarily involve the combination of resonantly stabilized radicals. In particular, propargyl and I-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl and f...


International Journal of Chemical Kinetics | 1998

A WIDE RANGE MODELING STUDY OF DIMETHYL ETHER OXIDATION

Henry J. Curran; William J. Pitz; Charles K. Westbrook; Philippe Dagaut; Jean-Claude Boettner; Michel Cathonnet

A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, 0 = 1.0 and 650 :5 T :5 1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates and products pertinent to the oxidation of DME. These data test the Idnetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g. the primary reference fuels, n-heptane and iso- octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM.


Twenty Eighth International Symposium on Combustion, Edinburgh, Scotland (GB), 07/30/2000--08/04/2000 | 2000

Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels

E.M. Fisher; William J. Pitz; Henry J. Curran; Charles K. Westbrook

Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors of 10 to 50. This discrepancy, which occurs for species with wellestablished kinetic mechanisms as well as for methyl esters, is tentatively ascribed to the presence of wall reactions in the experiments. The model predicts a region of weak or negative dependence of overall reaction rate on temperature for each methyl ester. Examination of the reaction fluxes provides an explanation of this behavior, involving a temperature-dependent competition between chain-propagating unimolecular decomposition processes and chain-branching processes, similar to that accepted for hydrocarbons. There is an urgent need to obtain more complete experimental data under well-characterized conditions for thorough testing of the model.


Twenty Eighth International Symposium on Combustion, University of Edinburgh, Edinburgh, Scotland (GB), 07/30/2000--08/04/2000 | 2000

Extinction and Autoignition of n-Heptane in Counterflow Configuration

Reinhard Seiser; Heinz Pitsch; K. Seshadri; William J. Pitz; Henry J. Curran

A study is performed to elucidate the mechanisms of extinction and autoignition of n-heptane in strained laminar flows under nonpremixed conditions. A previously developed detailed mechanism made UP of 2540 reversible elementary reactions among 557 species is the starting point for the study. The detailed mechanism was previously used to calculate ignition delay times in homogeneous reactors, and concentration histories of a number of species in plug-flow and jet-stirred reactors. An intermediate mechanism made up of 1282 reversible elementary reactions among 282 species and a short mechanism made up of 770 reversible elementary reactions among 160 species are assembled from this detailed mechanism. Ignition delay times in an isochoric homogeneous reactor calculated using the intermediate and the short mechanism are found to agree well with those calculated using the detailed mechanism. The intermediate and the short mechanism are used to calculate extinction and autoignition of n-heptane in strained laminar flows. Steady laminar flow of two counter flowing Streams toward a stagnation plane is considered. One stream made up of prevaporized n-heptane and nitrogen is injected from the fuel boundary and the other stream made up of air and nitrogen is injected from the oxidizer boundary. Critical conditions of extinction and autoignition given by the strain rate, temperature and concentrations of the reactants at the boundaries, are calculated. The results are found to agree well with experiments. Sensitivity analysis is carried out to evaluate the influence of various elementary reactions on autoignition. At all values of the strain rate investigated here, high temperature chemical processes are found to control autoignition. In general, the influence of low temperature chemistry is found to increase with decreasing strain. A key finding of the present study is that strain has more influence on low temperature chemistry than the temperature of the reactants.


Symposium (International) on Combustion | 1998

Oxidation of automotive primary reference fuels at elevated pressures

Henry J. Curran; William J. Pitz; Charles K. Westbrook; G.V. Callahan; Frederick L. Dryer

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines, the premixed burn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, they must understand the chemical kinetic processes that lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF) n-heptane and iso-octane belong. In this study, experiments were performed under engine like conditions in a high-pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments, and comparisons of experimentally measured and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690-1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed model.


Combustion and Flame | 1986

Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock☆

William J. Pitz; Charles K. Westbrook

A chemical kinetic oxidation mechanism for n-butane is employed to study hydrocarbon autoignition related to engine knock. A low temperature submechanism has been added to a previously developed high temperature mechanism in order to examine the importance of low temperature reaction paths in autoignition. Numerical calculations follow reactions taking place in a sample of end gas and are used to identify the controlling chemical reactions that can lead to autoignition. Reactions that involve the production and consumption of HO/sub 2/ and H/sub 2/O/sub 2/ were found to play a crucial role in high pressure autoignition. A possible role of selected antiknock additives was investigated numerically, with calculations showing that the removal of HO/sub 2/ and H/sub 2/O/sub 2/ by these additives would provide a strong inhibiting effect on the autoignition process.


SAE World Congress & Exhibition | 2007

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

William J. Pitz; N. P. Cernansky; Frederick L. Dryer; Fokion N. Egolfopoulos; J. T. Farrell; D. G. Friend; Heinz Pitsch

The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.

Collaboration


Dive into the William J. Pitz's collaboration.

Top Co-Authors

Avatar

Charles K. Westbrook

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Henry J. Curran

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Marco Mehl

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Mani Sarathy

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tianfeng Lu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Chih-Jen Sung

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Dec

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John M. Simmie

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge