Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Quinn is active.

Publication


Featured researches published by William J. Quinn.


Nature Immunology | 2008

Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling

Jason Stadanlick; Mary Kaileh; Fredrick G. Karnell; Jean L. Scholz; Juli P. Miller; William J. Quinn; Randall J. Brezski; Laura S. Treml; Kimberly A. Jordan; John G. Monroe; Ranjan Sen; Michael P. Cancro

The survival of transitional and mature B cells requires both the B cell antigen receptor (BCR) and BLyS receptor 3 (BR3), which suggests that these receptors send signals that are nonredundant or that engage in crosstalk with each other. Here we show that BCR signaling induced production of the nonclassical transcription factor NF-κB pathway substrate p100, which is required for transmission of BR3 signals and thus B cell survival. The capacity for sustained p100 production emerged during transitional B cell differentiation, the stage at which BCR signals begin to mediate survival rather than negative selection. Our findings identify a molecular mechanism for the reliance of primary B cells on continuous BR3 and BCR signaling, as well as for the gradual resistance to negative selection that is acquired during B cell maturation.


Journal of Experimental Medicine | 2005

Characterization of marginal zone B cell precursors

Bhaskar Srivastava; William J. Quinn; Kristin Hazard; Jan Erikson; David Allman

Selection of recently formed B cells into the follicular or marginal zone (MZ) compartments is proposed to occur by way of proliferative intermediates expressing high levels of CD21/35 and CD23. However, we show that CD21/35high CD23+ splenocytes are not enriched for proliferative cells, and do not contribute substantially to the generation of follicular B cells. Instead, ontogenic relationships, steady-state labeling kinetics, and adoptive transfer experiments suggest that CD21/35high CD23+ splenocytes serve primarily as precursors for MZ B cells, although their developmental potential seems to be broader and is influenced by environmental cues that are associated with lymphopenia. Furthermore, CD21/35high CD23+ splenocytes share several key functional characteristics with MZ B cells, including their capacity to trap T-independent antigen and a heightened proliferative response to LPS. These observations challenge previous models of peripheral B cell maturation, and suggest that MZ B cells develop by way of CD21/35high CD23+ intermediates.


Proceedings of the National Academy of Sciences of the United States of America | 2008

BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact

Jean L. Scholz; Jenni E. Crowley; Mary M. Tomayko; Natalie C. Steinel; Patrick J. O'Neill; William J. Quinn; Radhika Goenka; Juli P. Miller; Yun Hee Cho; Vatana Long; Christopher J. Ward; Thi-Sau Migone; Mark J Shlomchik; Michael P. Cancro

We have used an inhibiting antibody to determine whether preimmune versus antigen-experienced B cells differ in their requisites for BLyS, a cytokine that controls differentiation and survival. Whereas in vivo BLyS inhibition profoundly reduced naïve B cell numbers and primary immune responses, it had a markedly smaller effect on memory B cells and long-lived plasma cells, as well as secondary immune responses. There was heterogeneity within the memory pools, because IgM-bearing memory cells were sensitive to BLyS depletion whereas IgG-bearing memory cells were not, although both were more resistant than naïve cells. There was also heterogeneity within B1 pools, as splenic but not peritoneal B1 cells were diminished by anti-BLyS treatment, yet the number of natural antibody-secreting cells remained constant. Together, these findings show that memory B cells and natural antibody-secreting cells are BLyS-independent and suggest that these pools can be separately manipulated.


Nature Immunology | 2010

A role for IL-27p28 as an antagonist of gp130-mediated signaling

Jason S. Stumhofer; Elia D. Tait; William J. Quinn; Nancy Hosken; Björn Spudy; Radhika Goenka; Ceri Alan Fielding; Aisling C. O'Hara; Yi Chen; Michael L. Jones; Christiaan J. M. Saris; Stefan Rose-John; Daniel J. Cua; Simon Arnett Jones; Merle Elloso; Joachim Grötzinger; Michael P. Cancro; Steven D. Levin; Christopher A. Hunter

The heterodimeric cytokine interleukin 27 (IL-27) signals through the IL-27Rα subunit of its receptor, combined with gp130, a common receptor chain used by several cytokines, including IL-6. Notably, the IL-27 subunits p28 (IL-27p28) and EBI3 are not always expressed together, which suggests that they may have unique functions. Here we show that IL-27p28, independently of EBI3, antagonized cytokine signaling through gp130 and IL-6-mediated production of IL-17 and IL-10. Similarly, the ability to generate antibody responses was dependent on the activity of gp130-signaling cytokines. Mice transgenic for expression of IL-27p28 showed a substantial defect in the formation of germinal centers and antibody production. Thus, IL-27p28, as a natural antagonist of gp130-mediated signaling, may be useful as a therapeutic for managing inflammation mediated by cytokines that signal through gp130.


Cell Metabolism | 2016

Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle

David W. Frederick; Emanuele Loro; Ling Liu; Antonio Davila; Karthikeyani Chellappa; Ian M. Silverman; William J. Quinn; Sager J. Gosai; Elisia D. Tichy; James G. Davis; Foteini Mourkioti; Brian D. Gregory; Ryan Dellinger; Philip Redpath; Marie E. Migaud; Eiko Nakamaru-Ogiso; Joshua D. Rabinowitz; Tejvir S. Khurana; Joseph A. Baur

NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function.


Journal of Immunology | 2012

Long-Lived Bone Marrow Plasma Cells Are Induced Early in Response to T Cell-Independent or T Cell-Dependent Antigens

Alexandra Bortnick; Irene Chernova; William J. Quinn; Monica R. Mugnier; Michael P. Cancro; David Allman

The signals required to generate long-lived plasma cells remain unresolved. One widely cited model posits that long-lived plasma cells derive from germinal centers (GCs) in response to T cell-dependent (TD) Ags. Thus, T cell-independent (TI) Ags, which fail to sustain GCs, are considered ineffective at generating long-lived plasma cells. However, we show that long-lived hapten-specific plasma cells are readily induced without formation of GCs. Long-lived plasma cells developed in T cell-deficient mice after a single immunization with haptenated LPS, a widely used TI Ag. Long-lived plasma cells also formed in response to TD Ag when the GC response was experimentally prevented. These observations establish that long-lived plasma cells are induced in both TI and TD responses, and can arise independently of B cell maturation in GCs.


Journal of Immunology | 2006

Cutting Edge: Impaired Transitional B Cell Production and Selection in the Nonobese Diabetic Mouse

William J. Quinn; Negin Noorchashm; Jenni E. Crowley; Amy J. Reed; Hooman Noorchashm; Ali Naji; Michael P. Cancro

Developing B cells undergo selection at multiple checkpoints to eliminate autoreactive clones. We analyzed B cell kinetics in the NOD mouse to establish whether these checkpoints are intact. Our results show that although bone marrow production is normal in NOD mice, transitional (TR) B cell production collapses at 3 wk of age, reflecting a lack of successful immature B cell migration to the periphery. This yields delayed establishment of the follicular pool and a lack of selection at the TR checkpoint, such that virtually all immature B cells that exit the bone marrow mature without further selection. These findings suggest that compromised TR B cell generation in NOD mice yields relaxed TR selection, affording autoreactive specificities access to mature pools.


Journal of Clinical Investigation | 2011

Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI

Amaya I. Wolf; Krystyna Mozdzanowska; William J. Quinn; Michele H. Metzgar; Katie L. Williams; Andrew J. Caton; Eric Meffre; Richard J. Bram; Loren D. Erickson; David Allman; Michael P. Cancro; Jan Erikson

Antiviral Abs, for example those produced in response to influenza virus infection, are critical for virus neutralization and defense against secondary infection. While the half-life of Abs is short, Ab titers can last a lifetime due to a subset of the Ab-secreting cells (ASCs) that is long lived. However, the mechanisms governing ASC longevity are poorly understood. Here, we have identified a critical role for extrinsic cytokine signals in the survival of respiratory tract ASCs in a mouse model of influenza infection. Irradiation of mice at various time points after influenza virus infection markedly diminished numbers of lung ASCs, suggesting that they are short-lived and require extrinsic factors in order to persist. Neutralization of the TNF superfamily cytokines B lymphocyte stimulator (BLyS; also known as BAFF) and a proliferation-inducing ligand (APRIL) reduced numbers of antiviral ASCs in the lungs and bone marrow, whereas ASCs in the spleen and lung-draining lymph node were surprisingly unaffected. Mice deficient in transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), a receptor for BLyS and APRIL, mounted an initial antiviral B cell response similar to that generated in WT mice but failed to sustain protective Ab titers in the airways and serum, leading to increased susceptibility to secondary viral challenge. These studies highlight the importance of TACI signaling for the maintenance of ASCs and protection against influenza virus infection.


The EMBO Journal | 2013

YY1 controls Igκ repertoire and B-cell development, and localizes with condensin on the Igκ locus.

Xuan Pan; Madhusudhan Papasani; Yi Hao; Marco Calamito; Fang Wei; William J. Quinn; Arindam Basu; Junwen Wang; Suchita Hodawadekar; Kristina Zaprazna; Huifei Liu; Yang Shi; David Allman; Michael P. Cancro; Michael L. Atchison

Conditional knock‐out (KO) of Polycomb Group (PcG) protein YY1 results in pro‐B cell arrest and reduced immunoglobulin locus contraction needed for distal variable gene rearrangement. The mechanisms that control these crucial functions are unknown. We deleted the 25 amino‐acid YY1 REPO domain necessary for YY1 PcG function, and used this mutant (YY1ΔREPO), to transduce bone marrow from YY1 conditional KO mice. While wild‐type YY1 rescued B‐cell development, YY1ΔREPO failed to rescue the B‐cell lineage yielding reduced numbers of B lineage cells. Although the IgH rearrangement pattern was normal, there was a selective impact at the Igκ locus that showed a dramatic skewing of the expressed Igκ repertoire. We found that the REPO domain interacts with proteins from the condensin and cohesin complexes, and that YY1, EZH2 and condensin proteins co‐localize at numerous sites across the Ig kappa locus. Knock‐down of a condensin subunit protein or YY1 reduced rearrangement of Igκ Vκ genes suggesting a direct role for YY1‐condensin complexes in Igκ locus structure and rearrangement.


Arthritis & Rheumatism | 2012

Dispensability of APRIL to the development of systemic lupus erythematosus in NZM 2328 mice

Chaim O. Jacob; Shunhua Guo; Noam Jacob; Rahul D. Pawar; Chaim Putterman; William J. Quinn; Michael P. Cancro; Thi Sau Migone; William Stohl

OBJECTIVE To determine the role of APRIL in the development of systemic lupus erythematosus (SLE) in mice. METHODS Wild-type (WT) NZM 2328, NZM. April(-/-) , NZM.Baff(-/-) , and NZM.Baff(-/-) .April(-/-) mice were evaluated for lymphocyte phenotype by flow cytometry, for serum total IgG and IgG autoantibody levels by enzyme-linked immunosorbent assay, for glomerular deposition of IgG and C3 by immunofluorescence, for renal changes by histopathology, and for clinical disease by laboratory assessment (severe proteinuria). RESULTS In comparison to WT mice, NZM.April(-/-) mice harbored increased spleen B cells, T cells, and plasma cells (PCs), increased serum levels of IgG antichromatin antibodies, and decreased numbers of bone marrow (BM) PCs. Glomerular deposition of IgG and C3 was similar in NZM.April(-/-) mice and WT mice, renal changes on histopathology tended to be more severe in NZM.April(-/-) mice than in WT mice, and development of clinical disease was identical in NZM.April(-/-) mice and WT mice. BM (but not spleen) PCs and serum IgG antichromatin and anti-double-stranded DNA antibody levels were lower in NZM.Baff(-/-) .April(-/-) mice than in NZM.Baff(-/-) mice, whereas renal immunopathology in each cohort was equally mild. CONCLUSION APRIL is dispensable for the development of full-blown SLE in NZM mice. Moreover, the elimination of both APRIL and BAFF had no discernible effect on the development of renal immunopathology or clinical disease beyond that of elimination of BAFF alone. The reduction in BM PCs in hosts doubly deficient in APRIL and BAFF beyond that in hosts deficient only in BAFF raises concern that combined antagonism of APRIL and BAFF may lead to greater immunosuppression without a concomitant increase in therapeutic efficacy.

Collaboration


Dive into the William J. Quinn's collaboration.

Top Co-Authors

Avatar

Michael P. Cancro

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David Allman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jean L. Scholz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenni E. Crowley

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Baur

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radhika Goenka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

William Stohl

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge