Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Sullivan is active.

Publication


Featured researches published by William J. Sullivan.


Molecular and Cellular Biology | 2005

Histone-Modifying Complexes Regulate Gene Expression Pertinent to the Differentiation of the Protozoan Parasite Toxoplasma gondii†

Nehmé Saksouk; Micah M. Bhatti; Sylvie Kieffer; Aaron T. Smith; Karine Musset; Jérôme Garin; William J. Sullivan; Marie-France Cesbron-Delauw; Mohamed-Ali Hakimi

ABSTRACT Pathogenic apicomplexan parasites like Toxoplasma and Plasmodium (malaria) have complex life cycles consisting of multiple stages. The ability to differentiate from one stage to another requires dramatic transcriptional changes, yet there is a paucity of transcription factors in these protozoa. In contrast, we show here that Toxoplasma possesses extensive chromatin remodeling machinery that modulates gene expression relevant to differentiation. We find that, as in other eukaryotes, histone acetylation and arginine methylation are marks of gene activation in Toxoplasma. We have identified mediators of these histone modifications, as well as a histone deacetylase (HDAC), and correlate their presence at target promoters in a stage-specific manner. We purified the first HDAC complex from apicomplexans, which contains novel components in addition to others previously reported in eukaryotes. A Toxoplasma orthologue of the arginine methyltransferase CARM1 appears to work in concert with the acetylase TgGCN5, which exhibits an unusual bias for H3 [K18] in vitro. Inhibition of TgCARM1 induces differentiation, showing that the parasite life cycle can be manipulated by interfering with epigenetic machinery. This may lead to new approaches for therapy against protozoal diseases and highlights Toxoplasma as an informative model to study the evolution of epigenetics in eukaryotic cells.


Fems Microbiology Reviews | 2012

Mechanisms of Toxoplasma gondii persistence and latency

William J. Sullivan; Victoria Jeffers

Toxoplasma gondii is an obligate intracellular protozoan parasite that causes opportunistic disease, particularly in immunocompromised individuals. Central to its transmission and pathogenesis is the ability of the proliferative stage (tachyzoite) to convert into latent tissue cysts (bradyzoites). Encystment allows Toxoplasma to persist in the host and affords the parasite a unique opportunity to spread to new hosts without proceeding through its sexual stage, which is restricted to felids. Bradyzoite tissue cysts can cause reactivated toxoplasmosis if host immunity becomes impaired. A greater understanding of the molecular mechanisms orchestrating bradyzoite development is needed to better manage the disease. Here, we will review key studies that have contributed to our knowledge about this persistent form of the parasite and how to study it, with a focus on how cellular stress can signal for the reprogramming of gene expression needed during bradyzoite development.


Journal of Experimental Medicine | 2010

The Plasmodium eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands

Min Zhang; Clare Fennell; Lisa C. Ranford-Cartwright; Ramanavelan Sakthivel; Pascale Gueirard; Stephan Meister; Anat Caspi; Christian Doerig; Ruth S. Nussenzweig; Renu Tuteja; William J. Sullivan; David S. Roos; Beatriz M. A. Fontoura; Robert Ménard; Elizabeth A. Winzeler; Victor Nussenzweig

Sporozoites, the invasive form of malaria parasites transmitted by mosquitoes, are quiescent while in the insect salivary glands. Sporozoites only differentiate inside of the hepatocytes of the mammalian host. We show that sporozoite latency is an active process controlled by a eukaryotic initiation factor-2α (eIF2α) kinase (IK2) and a phosphatase. IK2 activity is dominant in salivary gland sporozoites, leading to an inhibition of translation and accumulation of stalled mRNAs into granules. When sporozoites are injected into the mammalian host, an eIF2α phosphatase removes the PO4 from eIF2α-P, and the repression of translation is alleviated to permit their transformation into liver stages. In IK2 knockout sporozoites, eIF2α is not phosphorylated and the parasites transform prematurely into liver stages and lose their infectivity. Thus, to complete their life cycle, Plasmodium sporozoites exploit the mechanism that regulates stress responses in eukaryotic cells.


Molecular BioSystems | 2008

Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes

Amrita Mohan; William J. Sullivan; Predrag Radivojac; A. Keith Dunker; Vladimir N. Uversky

Parasitic protozoal infections have long been known to cause profound degrees of sickness and death in humans as well as animal populations. Despite the increase in the number of annotated genomes available for a large variety of protozoa, a great deal more has yet to be learned about them, from their fundamental physiology to mechanisms invoked during host-pathogen interactions. Most of these genomes share a common feature, namely a high prevalence of low complexity regions in their predicted proteins, which is believed to contribute to the uniqueness of the individual species within this diverse group of early-branching eukaryotes. In the case of Plasmodium species, which cause malaria, such regions have also been reported to hamper the identification of homologues, thus making functional genomics exceptionally challenging. One of the better accepted theories accounting for the high number of low complexity regions is the presence of intrinsic disorder in these microbes. In this study we compare the degree of disordered proteins that are predicted to be expressed in many such ancient eukaryotic cells. Our findings indicate an unusual bias in the amino acids comprising protozoal proteomes, and show that intrinsic disorder is remarkably abundant among their predicted proteins. Additionally, the intrinsically disordered regions tend to be considerably longer in the early-branching eukaryotes. An analysis of a Plasmodium falciparum interactome indicates that protein-protein interactions may be at least one function of the intrinsic disorder. This study provides a bioinfomatics basis for the discovery and analysis of unfoldomes (the complement of intrinsically disordered proteins in a given proteome) of early-branching eukaryotes. It also provides new insights into the evolution of intrinsic disorder in the context of adapting to a parasitic lifestyle and lays the foundation for further work on the subject.


Journal of Biological Chemistry | 2008

Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii

Jana Narasimhan; Bradley R. Joyce; Arunasalam Naguleswaran; Aaron T. Smith; Meredith R. Livingston; Stacy E. Dixon; Isabelle Coppens; Ronald C. Wek; William J. Sullivan

A key problem in the treatment of numerous pathogenic eukaryotes centers on their development into latent forms during stress. For example, the opportunistic protist Toxoplasma gondii converts to latent cysts (bradyzoites) responsible for recrudescence of disease. We report that Toxoplasma eukaryotic initiation factor-2α (TgIF2α) is phosphorylated during stress and establish that protozoan parasites utilize translation control to modulate gene expression during development. Importantly, TgIF2α remains phosphorylated in bradyzoites, explaining how these cells maintain their quiescent state. Furthermore, we have characterized novel eIF2 kinases; one in the endoplasmic reticulum and a likely regulator of the unfolded protein response (TgIF2K-A) and another that is a probable responder to cytoplasmic stresses (TgIF2K-B). Significantly, our data suggest that 1) the regulation of protein translation through eIF2 kinases is associated with development, 2) eIF2α phosphorylation is employed by cells to maintain a latent state, and 3) endoplasmic reticulum and cytoplasmic stress responses evolved in eukaryotic cells before the early diverging Apicomplexa. Given its importance to pathogenesis, eIF2 kinase-mediated stress responses may provide opportunities for novel therapeutics.


Molecular Microbiology | 2008

The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements

Michael S. Behnke; Josh B. Radke; Aaron T. Smith; William J. Sullivan; Michael W. White

Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis‐elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite‐ and bradyzoite‐specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis‐acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite‐specific NTPase during bradyzoite development were fine mapped to a 6–8u2003bp resolution and these minimal cis‐elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel‐shift experiments show that mapped cis‐elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a ‘poised’ chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.


Cellular Microbiology | 2006

Histones and histone modifications in protozoan parasites

William J. Sullivan; Arunasalam Naguleswaran; Sergio O. Angel

Protozoan parasites are early branching eukaryotes causing significant morbidity and mortality in humans and livestock. Single‐celled parasites have evolved complex life cycles, which may involve multiple host organisms, and strategies to evade host immune responses. Consequently, two key aspects of virulence that underlie pathogenesis are parasite differentiation and antigenic variation, both of which require changes in the expressed genome. Complicating these requisite alterations in the parasite transcriptome is chromatin, which serves as a formidable barrier to DNA processes including transcription, repair, replication and recombination. Considerable progress has been made in the study of chromatin dynamics in other eukaryotes, and there is much to be gained in extending these analyses to protozoan parasites. Much of the work completed to date has focused on histone acetylation and methylation in the apicomplexans and trypanosomatids. As we describe in this review, such studies provide a unique vantage point of the evolutionary picture of eukaryotic cell development, and reveal unique phenomena that could be exploited pharmacologically to treat protozoal diseases.


Eukaryotic Cell | 2012

Lysine Acetylation Is Widespread on Proteins of Diverse Function and Localization in the Protozoan Parasite Toxoplasma gondii

Victoria Jeffers; William J. Sullivan

ABSTRACT While histone proteins are the founding members of lysine acetylation substrates, it is now clear that hundreds of other proteins can be acetylated in multiple compartments of the cell. Our knowledge of the scope of this modification throughout the kingdom of life is beginning to emerge, as proteome-wide lysine acetylation has been documented in prokaryotes, Arabidopsis thaliana, Drosophila melanogaster, and human cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify parasite peptides enriched by immunopurification with acetyl-lysine antibody, we produced the first proteome-wide analysis of acetylation for a protozoan organism, the opportunistic apicomplexan parasite Toxoplasma gondii. The results show that lysine acetylation is abundant in the actively proliferating tachyzoite form of the parasite, which causes acute toxoplasmosis. Our approach successfully identified known acetylation marks on Toxoplasma histones and α-tubulin and detected over 400 novel acetylation sites on a wide variety of additional proteins, including those with roles in transcription, translation, metabolism, and stress responses. Importantly, an extensive set of parasite-specific proteins, including those found in organelles unique to Apicomplexa, is acetylated in the parasite. Our data provide a wealth of new information that improves our understanding of the evolution of this vital regulatory modification while potentially revealing novel therapeutic avenues. We conclude from this study that lysine acetylation was prevalent in the early stages of eukaryotic cell evolution and occurs on proteins involved in a remarkably diverse array of cellular functions, including those that are specific to parasites.


Biochemical Journal | 2004

Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control.

William J. Sullivan; Jana Narasimhan; Micah M. Bhatti; Ronald C. Wek

The ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phosphorylation of eukaryotic initiation factor-2α promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii

Bradley R. Joyce; Sherry F. Queener; Ronald C. Wek; William J. Sullivan

While seeking a new host cell, obligate intracellular parasites, such as the protozoan Toxoplasma gondii, must be able to endure the stress of an extracellular environment. The mechanisms Toxoplasma use to remain viable while deprived of a host cell are not understood. We have previously shown that phosphorylation of Toxoplasma eukaryotic initiation factor-2α (TgIF2α) is a conserved response to stress. Here we report the characterization of Toxoplasma harboring a point mutation (S71A) in TgIF2α that prevents phosphorylation. Results show that TgIF2α phosphorylation is critical for parasite viability because the TgIF2α-S71A mutants are ill-equipped to cope with life outside the host cell. The TgIF2α-S71A mutants also showed a significant delay in producing acute toxoplasmosis in vivo. We conclude that the phosphorylation of TgIF2α plays a crucial role during the lytic cycle by ameliorating the stress of the extracellular environment while the parasite searches for a new host cell.

Collaboration


Dive into the William J. Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kami Kim

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Sergio O. Angel

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge