Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William K. Gillette is active.

Publication


Featured researches published by William K. Gillette.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling

Masaya Baba; Seung-Beom Hong; Nirmala Sharma; Michelle B. Warren; Michael L. Nickerson; Akihiro Iwamatsu; Dominic Esposito; William K. Gillette; Ralph F. Hopkins; James L. Hartley; Mutsuo Furihata; Shinya Oishi; Wei Zhen; Terrence R. Burke; W. Marston Linehan; Laura S. Schmidt; Berton Zbar

Birt–Hogg–Dubé syndrome, a hamartoma disorder characterized by benign tumors of the hair follicle, lung cysts, and renal neoplasia, is caused by germ-line mutations in the BHD(FLCN) gene, which encodes a tumor-suppressor protein, folliculin (FLCN), with unknown function. The tumor-suppressor proteins encoded by genes responsible for several other hamartoma syndromes, LKB1, TSC1/2, and PTEN, have been shown to be involved in the mammalian target of rapamycin (mTOR) signaling pathway. Here, we report the identification of the FLCN-interacting protein, FNIP1, and demonstrate its interaction with 5′ AMP-activated protein kinase (AMPK), a key molecule for energy sensing that negatively regulates mTOR activity. FNIP1 was phosphorylated by AMPK, and its phosphorylation was reduced by AMPK inhibitors, which resulted in reduced FNIP1 expression. AMPK inhibitors also reduced FLCN phosphorylation. Moreover, FLCN phosphorylation was diminished by rapamycin and amino acid starvation and facilitated by FNIP1 overexpression, suggesting that FLCN may be regulated by mTOR and AMPK signaling. Our data suggest that FLCN, mutated in Birt–Hogg–Dubé syndrome, and its interacting partner FNIP1 may be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways.


The Journal of Infectious Diseases | 2007

Filovirus-Like Particles Produced in Insect Cells: Immunogenicity and Protection in Rodents

Kelly L. Warfield; Nichole A. Posten; Dana L. Swenson; Gene G. Olinger; Dominic Esposito; William K. Gillette; Ralph F. Hopkins; Julie Costantino; Rekha G. Panchal; James L. Hartley; M. Javad Aman; Sina Bavari

BACKGROUND Virus-like particles (VLPs) of Ebola virus (EBOV) and Marburg virus (MARV) produced in human 293T embryonic kidney cells have been shown to be effective vaccines against filoviral infection. In this study, we explored alternative strategies for production of filovirus-like particle-based vaccines, to accelerate the development process. The goal of this work was to increase the yield of VLPs, while retaining their immunogenic properties. METHODS Ebola and Marburg VLPs (eVLPs and mVLPs, respectively) were generated by use of recombinant baculovirus constructs expressing glycoprotein, VP40 matrix protein, and nucleoprotein from coinfected insect cells. The baculovirus-derived eVLPs and mVLPs were characterized biochemically, and then the immune responses produced by the eVLPs in insect cells were studied further. RESULTS The baculovirus-derived eVLPs elicited maturation of human myeloid dendritic cells (DCs), indicating their immunogenic properties. Mice vaccinated with insect cell-derived eVLPs generated antibody and cellular responses equivalent to those vaccinated with mammalian 293T cell-derived eVLPs and were protected from EBOV challenge in a dose-dependent manner. CONCLUSION Together, these data suggest that filovirus-like particles produced by baculovirus expression systems, which are amenable to large-scale production, are highly immunogenic and are suitable as safe and effective vaccines for the prevention of filoviral infection.


Journal of Immunological Methods | 2010

Detection of antibodies to Kaposi’s Sarcoma-Associated Herpesvirus: a new approach using K8.1 ELISA and a newly developed recombinant LANA ELISA

Georgina Mbisa; Wendell Miley; Christine Gamache; William K. Gillette; Dominic Esposito; Ralph F. Hopkins; Michael P. Busch; George B. Schreiber; Richard F. Little; Robert Yarchoan; Betty A. Ortiz-Conde; Nazzarena Labo; Denise Whitby

Detection of antibodies to Kaposis sarcoma-associated herpesvirus (KSHV or Human herpesvirus 8) is a topic of ongoing controversy. KSHV expresses multiple antigens and host responses are highly variable. We have previously described an algorithm for determining KSHV infection based on K8.1 ELISA and LANA immunofluorescence assay (IFA). Here we describe the development of a recombinant ELISA for LANA and an improved testing strategy using ELISAs for LANA and K8.1. We assessed mammalian and baculovirus expression systems for the production of full-length recombinant LANA. We evaluated the performance of LANA ELISAs using human serum samples from several sources including blood donors and clinical patients diagnosed with Kaposis sarcoma and compared them to LANA IFA. Both LANA ELISAs exhibited comparable sensitivity and specificity to LANA IFA but showed considerably greater reliability. The LANA ELISA can thus be used in conjunction with the previously described K8.1 ELISA to enable the highly sensitive and specific detection of antibodies to KSHV. Use of this testing strategy will provide a more accurate and reliable diagnostic assessment of KSHV status.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ

Srisathiyanarayanan Dharmaiah; Lakshman Bindu; Timothy Tran; William K. Gillette; Peter Frank; Rodolfo Ghirlando; Dwight V. Nissley; Dominic Esposito; Frank McCormick; Andrew G. Stephen; Dhirendra Simanshu

Significance Despite the significant progress made in the last few years toward targeting phosphodiesterase-δ (PDEδ) for KRAS (Kirsten rat sarcoma isoform)-driven cancers, there is no structural information available on posttranslationally modified KRAS4b in complex with PDEδ. The KRAS4b–PDEδ structure reported here provides the structural details of the protein–protein interaction interface and the atomic details of the hypervariable region of KRAS4b. Structural comparison of the two crystal forms allowed identification of a 5-aa-long sequence motif in KRAS4b that could allow PDEδ to bind to both farnesylated and geranylgeranylated KRAS4b. Structural insights obtained from this study could be used to guide the development of improved and more specific inhibitors of the KRAS4b–PDEδ complex. Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated–methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated–methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated–methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated–methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein–protein interaction interface in KRAS4b–PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.


PLOS Pathogens | 2014

Heterogeneity and breadth of host antibody response to KSHV infection demonstrated by systematic analysis of the KSHV proteome.

Nazzarena Labo; Wendell Miley; Vickie Marshall; William K. Gillette; Dominic Esposito; Matthew Bess; Alexandra Turano; Thomas S. Uldrick; Mark N. Polizzotto; Kathleen M. Wyvill; Rachel Bagni; Robert Yarchoan; Denise Whitby

The Kaposi sarcoma associated herpesvirus (KSHV) genome encodes more than 85 open reading frames (ORFs). Serological evaluation of KSHV infection now generally relies on reactivity to just one latent and/or one lytic protein (commonly ORF73 and K8.1). Most of the other polypeptides encoded by the virus have unknown antigenic profiles. We have systematically expressed and purified products from 72 KSHV ORFs in recombinant systems and analyzed seroreactivity in US patients with KSHV-associated malignancies, and US blood donors (low KSHV seroprevalence population). We identified several KSHV proteins (ORF38, ORF61, ORF59 and K5) that elicited significant responses in individuals with KSHV-associated diseases. In these patients, patterns of reactivity were heterogeneous; however, HIV infection appeared to be associated with breadth and intensity of serological responses. Improved antigenic characterization of additional ORFs may increase the sensitivity of serologic assays, lead to more rapid progresses in understanding immune responses to KSHV, and allow for better comprehension of the natural history of KSHV infection. To this end, we have developed a bead-based multiplex assay detecting antibodies to six KSHV antigens.


Protein Expression and Purification | 2011

Purify First: rapid expression and purification of proteins from XMRV.

William K. Gillette; Dominic Esposito; Troy E. Taylor; Ralph F. Hopkins; Rachel Bagni; James L. Hartley

Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale.


Scientific Reports | 2015

Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions

William K. Gillette; Dominic Esposito; Maria Abreu Blanco; Patrick J. Alexander; Lakshman Bindu; Cammi Bittner; Oleg Chertov; Peter Frank; Carissa Grose; Jane E. Jones; Zhaojing Meng; Shelley Perkins; Que N. Van; Rodolfo Ghirlando; Matthew J. Fivash; Dwight V. Nissley; Frank McCormick; Matthew Holderfield; Andrew G. Stephen

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Journal of Biological Chemistry | 2011

Secretoglobin 3A2 Suppresses Bleomycin-induced Pulmonary Fibrosis by Transforming Growth Factor β Signaling Down-regulation

Reiko Kurotani; Satoshi Okumura; Tsutomu Matsubara; Utako Yokoyama; John R. Buckley; Takeshi Tomita; Kyohei Kezuka; Tomokazu Nagano; Dominic Esposito; Troy E. Taylor; William K. Gillette; Yoshihiro Ishikawa; Hiroyuki Abe; Jerrold M. Ward; Shioko Kimura

With increasing worldwide rates of morbidity and mortality of pulmonary fibrosis, the development of effective therapeutics for this disease is of great interest. Secretoglobin (SCGB) 3A2, a novel cytokine-like molecule predominantly expressed in pulmonary airways epithelium, exhibits anti-inflammatory and growth factor activities. In the current study SCGB3A2 was found to inhibit TGFβ-induced differentiation of fibroblasts to myofibroblasts, a hallmark of the fibrogenic process, using pulmonary fibroblasts isolated from adult mice. This induction was through increased phosphorylation of STAT1 and expression of SMAD7 and decreased phosphorylation of SMAD2 and SMAD3. To demonstrate the effect of SCGB3A2 on the TGFβ signaling in vivo, a bleomycin-induced pulmonary fibrosis mouse model was used. Mice were administered bleomycin intratracheally followed by intravenous injection of recombinant SCGB3A2. Histological examination in conjunction with inflammatory cell counts in bronchoalveolar lavage fluids demonstrated that SCGB3A2 suppressed bleomycin-induced pulmonary fibrosis. Microarray analysis was carried out using RNAs from lungs of bleomycin-treated mice with or without SCGB3A2 and normal mice treated with SCGB3A2. The results demonstrated that SCGB3A2 affects TGFβ signaling and reduces the expression of genes involved in fibrosis. This study suggests the potential utility of SCGB3A2 for targeting TGFβ signaling in the treatment of pulmonary fibrosis.


Molecular & Cellular Proteomics | 2005

Pooled ORF Expression Technology (POET) Using Proteomics to Screen Pools of Open Reading Frames for Protein Expression

William K. Gillette; Dominic Esposito; Peter Frank; Ming Zhou; Li-Rong Yu; Catherine Jozwik; Xiuying Zhang; Brighid McGowan; David M. Jacobowitz; Harvey B. Pollard; Tong Hao; David E. Hill; Marc Vidal; Thomas P. Conrads; Timothy D. Veenstra; James L. Hartley

We have developed a pooled ORF expression technology, POET, that uses recombinational cloning and proteomic methods (two-dimensional gel electrophoresis and mass spectrometry) to identify ORFs that when expressed are likely to yield high levels of soluble, purified protein. Because the method works on pools of ORFs, the procedures needed to subclone, express, purify, and assay protein expression for hundreds of clones are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from a pool of 688 Caenorhabditis elegans ORFs expressed in Escherichia coli yielded on average 6 times as much protein as 12 negative clones. Larger scale expression and purification of six of the positive clones yielded 47–374 mg of purified protein/liter. Using POET, pools of ORFs can be constructed, and the pools of the resulting proteins can be analyzed and manipulated to rapidly acquire information about the attributes of hundreds of proteins simultaneously.


Science Signaling | 2017

Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies

Andrew M. Waters; Irem Ozkan-Dagliyan; Angelina V. Vaseva; Nicole Fer; Leslie A. Strathern; G. Aaron Hobbs; Basile Tessier-Cloutier; William K. Gillette; Rachel K. Bagni; Gordon Whiteley; James L. Hartley; Frank McCormick; Adrienne D. Cox; Peter J. Houghton; David G. Huntsman; Mark R. Philips; Channing J. Der

Validation studies reveal the reliability of isoform- and mutation-specific anti-RAS antibodies. A resource on RAS antibodies Researchers rely largely on antibodies to measure the abundance, activity, and localization of a protein, information that provides critical insight into both normal and pathological cellular functions. However, antibodies are not always reliable or universally valid for the methods in which they are used; in particular, the reliability of commercial antibodies against RAS is highly variable. Waters et al. rigorously assessed 22 commercially available RAS antibodies for their utility to detect the distinct RAS isoforms in various cell types and for their use in specific analytical methods. Their findings show how reliably one can interpret the data acquired from each reagent. There is intense interest in developing therapeutic strategies for RAS proteins, the most frequently mutated oncoprotein family in cancer. Development of effective anti-RAS therapies will be aided by the greater appreciation of RAS isoform–specific differences in signaling events that support neoplastic cell growth. However, critical issues that require resolution to facilitate the success of these efforts remain. In particular, the use of well-validated anti-RAS antibodies is essential for accurate interpretation of experimental data. We evaluated 22 commercially available anti-RAS antibodies with a set of distinct reagents and cell lines for their specificity and selectivity in recognizing the intended RAS isoforms and mutants. Reliability varied substantially. For example, we found that some pan- or isoform-selective anti-RAS antibodies did not adequately recognize their intended target or showed greater selectivity for another; some were valid for detecting G12D and G12V mutant RAS proteins in Western blotting, but none were valid for immunofluorescence or immunohistochemical analyses; and some antibodies recognized nonspecific bands in lysates from “Rasless” cells expressing the oncoprotein BRAFV600E. Using our validated antibodies, we identified RAS isoform–specific siRNAs and shRNAs. Our results may help to ensure the accurate interpretation of future RAS studies.

Collaboration


Dive into the William K. Gillette's collaboration.

Top Co-Authors

Avatar

Dominic Esposito

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

James L. Hartley

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Stephen

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Peter Frank

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph F. Hopkins

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Lakshman Bindu

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge