Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William K. Gottschalk is active.

Publication


Featured researches published by William K. Gottschalk.


Endocrinology | 2001

Comprehensive Messenger Ribonucleic Acid Profiling Reveals That Peroxisome Proliferator-Activated Receptor γ Activation Has Coordinate Effects on Gene Expression in Multiple Insulin-Sensitive Tissues

James M. Way; W. Wallace Harrington; Kathleen K. Brown; William K. Gottschalk; Scott S. Sundseth; Traci Ann Mansfield; Timothy M. Willson; Steven A. Kliewer

Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle...


Clinical Pharmacology & Therapeutics | 2013

Using genetics to enable studies on the prevention of Alzheimer's disease.

Donna G. Crenshaw; William K. Gottschalk; Michael W. Lutz; Iris Grossman; Ann M. Saunders; James R. Burke; Kathleen A. Welsh-Bohmer; Stephen Brannan; Daniel K. Burns; Allen D. Roses

Curing Alzheimers disease (AD) remains an elusive goal; indeed, it may even prove to be impossible, given the nature of the disease. Although modulating disease progression is an attractive target and will alleviate the burden of the most severe stages, this strategy will not reduce the prevalence of the disease itself. Preventing or (as described in this article) delaying the onset of cognitive impairment and AD will provide the greatest benefit to individuals and society by pushing the onset of disease into the later years of life. Because of the high variability in the age of onset of the disease, AD prevention studies that do not stratify participants by age‐dependent disease risk will be operationally challenging, being large in size and of long duration. We present a composite genetic biomarker to stratify disease risk so as to facilitate clinical studies in high‐risk populations. In addition, we discuss the rationale for the use of pioglitazone to delay the onset of AD in individuals at high risk.


Advanced Drug Delivery Reviews | 2002

Preclinical developments in type 2 diabetes

James M. Lenhard; William K. Gottschalk

Type 2 diabetes is associated with insulin resistance in peripheral tissues, such as muscle and fat, impaired glucose-stimulated insulin secretion from pancreatic beta-cells and elevated hepatic gluconeogenesis. Current pharmacotherapy does not adequately address the metabolic defects underlying this disease. Thus, novel targets are being explored that enhance insulin action at target tissues, stimulate carbohydrate and fat catabolism, decrease endogenous glucose production and increase pancreatic beta-cell neogenesis and glucose-dependent insulin secretion. This article reviews recent developments in research on several of these targets, namely acetyl-CoA carboxylase 2 (ACC2), I kappa kinase (IKK) beta, dipeptidyl peptidase IV (DPP-IV) and glucagon-like peptide-1 receptor (GLP-1R).


Scientific Reports | 2016

Novel loci and pathways significantly associated with longevity.

Yi Zeng; Chao Nie; Junxia Min; Xiaomin Liu; Mengmeng Li; Huashuai Chen; Hanshi Xu; Mingbang Wang; Ting Ni; Yang Li; Han Yan; Jin Pei Zhang; Chun Song; Li Qing Chi; Han Ming Wang; Jie Dong; Gu Yan Zheng; Li Lin; Feng Qian; Yanwei Qi; Xiao Liu; Hongzhi Cao; Yinghao Wang; Lijuan Zhang; Zhaochun Li; Yufeng Zhou; Yan Wang; Jiehua Lu; Jianxin Li; Ming Qi

Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10−5). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity.


Journal of Parkinson's disease | 2014

The Broad Impact of TOM40 on Neurodegenerative Diseases in Aging.

William K. Gottschalk; Michael W. Lutz; He Yt; Ann M. Saunders; Daniel K. Burns; A. D. Roses; Ornit Chiba-Falek

Mitochondrial dysfunction is an important factor in the pathogenesis of age-related diseases, including neurodegenerative diseases like Alzheimers and Parkinsons spectrum disorders. A polymorphism in Translocase of the Outer Mitochondrial Membrane - 40 kD (TOMM40) is associated with risk and age-of onset of late-onset AD, and is the only nuclear- encoded gene identified in genetic studies to date that presumably contributes to LOAD-related mitochondria dysfunction. In this review, we describe the TOM40-mediated mitochondrial protein import mechanism, and discuss the evidence linking TOM40 with Alzheimers (AD) and Parkinsons (PD) diseases. All but 36 of the >~1,500 mitochondrial proteins are encoded by the nucleus and are synthesized on cytoplasmic ribosomes, and most of these are imported into mitochondria through the TOM complex, of which TOM40 is the central pore, mediating communication between the cytoplasm and the mitochondrial interior. APP enters and obstructs the TOM40 pore, inhibiting import of OXPHOS-related proteins and disrupting the mitochondrial redox balance. Other pathogenic proteins, such as Aβ and alpha-synuclein, readily pass through the pore and cause toxic effects by directly inhibiting mitochondrial enzymes. Healthy mitochondria normally import and degrade the PD-related protein Pink1, but Pink1 exits mitochondria if the membrane potential collapses and initiates Parkin-mediated mitophagy. Under normal circumstances, this process helps clear dysfunctional mitochondria and contributes to cellular health, but PINK1 mutations associated with PD exit mitochondria with intact membrane potentials, disrupting mitochondrial dynamics, leading to pathology. Thus, TOM40 plays a central role in the mitochondrial dysfunction that underlies age-related neurodegenerative diseases. Learning about the factors that control TOM40 levels and activity, and how TOM40, specifically, and the TOM complex, generally, interacts with potentially pathogenic proteins, will provide deeper insights to AD and PD pathogenesis, and possibly new targets for preventative and/or therapeutic treatments.


Diabetologia | 1997

UDP-N-acetylglucosamine transferase and glutamine: Fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues

Hannele Yki-Järvinen; Christoph Vogt; Ruben Pipek; Marc C. Daniels; Antti Virkamäki; Sari Mäkimattila; Lawrence J. Mandarino; Ralph A. DeFronzo; Donald A. McClain; William K. Gottschalk

Summary Glutamine:fructose 6-phosphate amidotransferase (GFA) is rate-limiting for hexosamine biosynthesis, while a UDP-GlcNAc β-N-acetylglucosaminyltransferase (O-GlcNAc transferase) catalyses final O-linked attachment of GlcNAc to serine and threonine residues on intracellular proteins. Increased activity of the hexosamine pathway is a putative mediator of glucose-induced insulin resistance but the mechanisms are unclear. We determined whether O-GlcNAc transferase is found in insulin-sensitive tissues and compared its activity to that of GFA in rat tissues. We also determined whether non-insulin-dependent diabetes mellitus (NIDDM) or acute hyperinsulinaemia alters O-GlcNAc transferase activity in human skeletal muscle. O-GlcNAc transferase was measured using 3H-UDP-GlcNAc and a synthetic cationic peptide substrate containing serine and threonine residues, and GFA was determined by measuring a fluorescent derivative of GlcN6P by HPLC. O-GlcNAc transferase activities were 2–4 fold higher in skeletal muscles and the heart than in the liver, which had the lowest activity, while GFA activity was 14–36-fold higher in submandibular gland and 5–18 fold higher in the liver than in skeletal muscles or the heart. In patients with NIDDM (n = 11), basal O-GlcNAc transferase in skeletal muscle averaged 3.8 ± 0.3 nmol/mg · min, which was not different from that in normal subjects (3.3 ± 0.4 nmol/mg · min). A 180-min intravenous insulin infusion (40 mU/m2· min) did not change muscle O-GlcNAc transferase activity in either group. We conclude that O-GlcNAc transferase is widely distributed in insulin-sensitive tissues in the rat and is also found in human skeletal muscle. These findings suggest the possibility that O-linked glycosylation of intracellular proteins is involved in mediating glucose toxicity. O-GlcNAc transferase does not, however, appear to be regulated by either NIDDM or acute hyperinsulinaemia, suggesting that mass action effects determine the extent of O-linked glycosylation under hyperglycaemic conditions. [Diabetologia (1997) 40: 76–81]


Alzheimers & Dementia | 2014

The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes

Colton Linnertz; Lauren G. Anderson; William K. Gottschalk; Donna G. Crenshaw; Michael W. Lutz; Jawara Allen; Sunita Saith; Mirta Mihovilovic; James R. Burke; Kathleen A. Welsh-Bohmer; Allen D. Roses; Ornit Chiba-Falek

We investigated the genomic region spanning the Translocase of the Outer Mitochondrial Membrane 40‐kD (TOMM40) and Apolipoprotein E (APOE) genes, that has been associated with the risk and age of onset of late‐onset Alzheimers disease (LOAD) to determine whether a highly polymorphic, intronic poly‐T within this region (rs10524523; hereafter, 523) affects expression of the APOE and TOMM40 genes. Alleles of this locus are classified as S, short; L, long; and VL, very long based on the number of T residues.


Acta Crystallographica Section D-biological Crystallography | 2009

The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

Kevin P. Madauss; William Burkhart; Thomas G. Consler; David John Cowan; William K. Gottschalk; Aaron B. Miller; Steven A. Short; Thuy B. Tran; Shawn P. Williams

Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined alpha-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.


PLOS ONE | 2015

Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain

Donna G. Crenshaw; Karen Asin; William K. Gottschalk; Zhifeng Liang; Nanyin Zhang; Allen D. Roses

Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in clinical use for treatment of type 2 diabetes (T2DM). Accumulating evidence suggests PPARγ agonists may be useful for treating or delaying the onset of Alzheimer’s disease (AD), possibly via actions on mitochondria, and that dose strengths lower than those clinically used for T2DM may be efficacious. Our major objective was to determine if low doses of pioglitazone, administered orally, impacted brain activity. We measured blood-oxygenation-level dependent (BOLD) low-frequency fluctuations in conscious rats to map changes in brain resting-state functional connectivity due to daily, oral dosing with low-dose PIO. The connectivity in two neural circuits exhibited significant changes compared with vehicle after two days of treatment with PIO at 0.08 mg/kg/day. After 7 days of treatment with a range of PIO dose-strengths, connections between 17 pairs of brain regions were significantly affected. Functional connectivity with the CA1 region of the hippocampus, a region that is involved in memory and is affected early in the progression of AD, was specifically investigated in a seed-based analysis. This approach revealed that the spatial pattern of CA1 connectivity was consistent among all dose groups at baseline, prior to treatment with PIO, and in the control group imaged on day 7. Compared to baseline and controls, increased connectivity to CA1 was observed regionally in the hypothalamus and ventral thalamus in all PIO-treated groups, but was least pronounced in the group treated with the highest dose of PIO. These data support our hypothesis that PIO modulates neuronal and/or cerebrovascular function at dose strengths significantly lower than those used to treat T2DM and therefore may be a useful therapy for neurodegenerative diseases including AD.


Alzheimers & Dementia | 2016

Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer's disease

Allen D. Roses; Scott S. Sundseth; Ann M. Saunders; William K. Gottschalk; Daniel K. Burns; Michael W. Lutz

The methodology of Genome‐Wide Association Screening (GWAS) has been applied for more than a decade. Translation to clinical utility has been limited, especially in Alzheimers Disease (AD). It has become standard practice in the analyses of more than two dozen AD GWAS studies to exclude the apolipoprotein E (APOE) region because of its extraordinary statistical support, unique thus far in complex human diseases. New genes associated with AD are proposed frequently based on SNPs associated with odds ratio (OR) < 1.2. Most of these SNPs are not located within the associated gene exons or introns but are located variable distances away. Often pathologic hypotheses for these genes are presented, with little or no experimental support. By eliminating the analyses of the APOE‐TOMM40 linkage disequilibrium region, the relationship and data of several genes that are co‐located in that LD region have been largely ignored. Early negative interpretations limited the interest of understanding the genetic data derived from GWAS, particularly regarding the TOMM40 gene. This commentary describes the history and problem(s) in interpretation of the genetic interrogation of the “APOE” region and provides insight into a metabolic mitochondrial basis for the etiology of AD using both APOE and TOMM40 genetics.

Collaboration


Dive into the William K. Gottschalk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge