William K. Reisen
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William K. Reisen.
Antiviral Research | 2010
Scott C. Weaver; William K. Reisen
Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
Emerging Infectious Diseases | 2002
Laura B. Goddard; Amy E. Roth; William K. Reisen; Thomas W. Scott
To identify the mosquito species competent for West Nile virus (WNV) transmission, we evaluated 10 California species that are known vectors of other arboviruses or major pests: Culex tarsalis, Cx. pipiens pipiens, Cx. p. quinquefasciatus, Cx. stigmatosoma, Cx. erythrothorax, Ochlerotatus dorsalis, Oc. melanimon, Oc. sierrensis, Aedes vexans, and Culiseta inornata. All 10 became infected and were able to transmit WNV at some level. Ochlerotatus, Culiseta, and Aedes were low to moderately efficient vectors. They feed primarily on mammals and could play a secondary role in transmission. Oc. sierrensis, a major pest species, and Cx. p. quinquefasciatus from southern California were the least efficient laboratory vectors. Cx. tarsalis, Cx. stigmatosoma, Cx. erythrothorax, and other populations of Cx. pipiens complex were the most efficient laboratory vectors. Culex species are likely to play the primary role in the enzootic maintenance and transmission of WNV in California.
Journal of Medical Entomology | 2006
William K. Reisen; Ying Fang; Vincent M. Martinez
Abstract Culex tarsalis Coquillett females were infected with the NY99 strain of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) and then incubated under constant temperatures of 10–30°C. At selected time intervals, transmission was attempted using an in vitro capillary tube assay. The median time from imbibing an infectious bloodmeal until infected females transmitted WNV (median extrinsic incubation period, EIP50) was estimated by probit analysis. By regressing the EIP rate (inverse of EIP50) as a function of temperature from 14 to 30°C, the EIP was estimated to require 109 degree-days (DD) and the point of zero virus development (x-intercept) was estimated to be 14.3°C. The resulting degree-day model showed that the NY99 WNV strain responded to temperature differently than a lineage II strain of WNV from South Africa and approximated our previous estimates for St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). The invading NY99 WNV strain therefore required warm temperatures for efficient transmission. The time for completion of the EIP was estimated monthly from temperatures recorded at Coachella Valley, Los Angeles, and Kern County, California, during the 2004 epidemic year and related to the duration of the Cx. tarsalis gonotrophic cycle and measures of WNV activity. Enzootic WNV activity commenced after temperatures increased, the duration of the EIP decreased, and virus potentially was transmitted in two or less gonotrophic cycles. Temperatures in the United States during the epidemic summers of 2002–2004 indicated that WNV dispersal and resulting epicenters were linked closely to above-average summer temperatures.
Journal of Medical Entomology | 2005
William K. Reisen; Ying Fang; Vincent M. Martinez
Abstract The ability of the invading NY99 strain of West Nile virus (WNV) to elicit an elevated viremia response in California passerine birds was critical for the effective infection of Culex mosquitoes. Of the bird species tested, Western scrub jays, Aphelocoma coerulescens, produced the highest viremia response, followed by house finches, Carpodacus mexicanus, and house sparrows, Passer domesticus. Most likely, few mourning, Zenaidura macroura, or common ground, Columbina passerine, doves and no California quail, Callipepla californica, or chickens would infect blood-feeding Culex mosquitoes. All Western scrub jays and most house finches succumbed to infection. All avian hosts produced a lower viremia response and survived after infection with an endemic strain of St. Louis encephalitis virus. Culex species varied in their susceptibility to infection with both viruses, with Culex stigmatosoma Dyar generally most susceptible, followed by Culex tarsalis Coquillett, and then Culex p. quinquefasciatus Say. Populations within Culex species varied markedly in their susceptibility, perhaps contributing to the focality of WNV amplification. Transmitting female Cx. tarsalis expectorated from six to 3,777 plaque-forming units (PFU) of WNV during transmission trials, thereby exposing avian hosts to a wide range of infectious doses. Highly susceptible house finches and moderately susceptible mourning doves were infected by subcutaneous inoculation with decreasing concentrations of WNV ranging from 15,800 to <0.3 PFU. All birds became infected and produced comparable peak viremias on days 2–3 postinoculation; however, the rise in viremia titer and onset of the acute phase of infection occurred earliest in birds inoculated with the highest doses. WNV virulence in birds seemed critical in establishing elevated viremias necessary to efficiently infect blood feeding Culex mosquitoes.
Emerging Infectious Diseases | 2004
William K. Reisen; Hugh D. Lothrop; Robert E. Chiles; Minoo B. Madon; Cynthia K. Cossen; Leslie W. Woods; Stan Husted; Vicki L. Kramer; John Edman
The spread of WNV in California is tracked.
Journal of the Royal Society Interface | 2013
Robert C. Reiner; T. Alex Perkins; Christopher M. Barker; Tianchan Niu; Luis Fernando Chaves; Alicia M. Ellis; Dylan B. George; Arnaud Le Menach; Juliet R. C. Pulliam; Donal Bisanzio; Caroline O. Buckee; Christinah Chiyaka; Derek A. T. Cummings; Andres J. Garcia; Michelle L. Gatton; Peter W. Gething; David M. Hartley; Geoffrey L. Johnston; Eili Y. Klein; Edwin Michael; Steven W. Lindsay; Alun L. Lloyd; David M Pigott; William K. Reisen; Nick W. Ruktanonchai; Brajendra K. Singh; Andrew J. Tatem; Uriel Kitron; Simon I. Hay; Thomas W. Scott
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Annual Review of Entomology | 2010
William K. Reisen
Landscape epidemiology describes how the temporal dynamics of host, vector, and pathogen populations interact spatially within a permissive environment to enable transmission. The spatially defined focus, or nidus, of transmission may be characterized by vegetation as well as by climate, latitude, elevation, and geology. The ecological complexity, dimensions, and temporal stability of the nidus are determined largely by pathogen natural history and vector bionomics. Host populations, transmission efficiency, and therefore pathogen amplification vary spatially, thereby creating a heterogeneous surface that may be defined by remote sensing and statistical tools. The current review describes the evolution of landscape epidemiology as a science and exemplifies selected aspects by contrasting the ecology of two different recent disease outbreaks in North America caused by West Nile virus, an explosive, highly virulent mosquito-borne virus producing ephemeral nidi, and Borrelia burgdorferi, a slowly amplifying chronic pathogen producing semipermanent nidi.
Journal of Medical Entomology | 2006
William K. Reisen; Ying Fang; Hugh D. Lothrop; Vincent M. Martinez; Jennifer Wilson; Paul O’Connor; Ryan Carney; Barbara Cahoon-Young; Marzieh Shafii; Aaron C. Brault
Abstract West Nile virus (family Flaviviridae, genus Flavivirus, WNV) invaded southern California during 2003, successfully overwintered, amplified to epidemic levels, and then dispersed to every county in the state. Although surveillance programs successfully tracked and measured these events, mechanisms that allowed the efficient overwintering and subsequent amplification of WNV have not been elucidated. Our current research provided evidence for three mechanisms whereby WNV may have persisted in southern California during the winters of 2003–2004 and 2004–2005: 1) continued enzootic transmission, 2) vertical transmission by Culex mosquitoes, and 3) chronic infection in birds. WNV was detected in 140 dead birds comprising 32 species, including 60 dead American crows, thereby verifying transmission during the November–March winter period. Dead American crows provide evidence of recent transmission because this species always succumbs rapidly after infection. However, WNV RNA was not detected concurrently in 43,043 reproductively active female mosquitoes comprising 11 species and tested in 1,258 pools or antibody in sera from 190 sentinel chickens maintained in 19 flocks. Although efficient vertical transmission by WNV was demonstrated experimentally for Culex tarsalis Coquillett infected per os, 369 females collected diapausing in Kern County and tested in 32 pools were negative for WNV. Vertical transmission was detected in Culex pipiens quinquefasciatus Say adults reared from field-collected immatures collected from Kern County and Los Angeles during the summer transmission period. Chronic infection was detected by finding WNV RNA in 34 of 82 birds that were inoculated with WNV experimentally, held for >6 wk after infection, and then necropsied. Frequent detection of WNV RNA in kidney tissue in experimentally infected birds >6 wk postinfection may explain, in part, the repeated detection of WNV RNA in dead birds recovered during winter, especially in species such as mourning doves that typically do not die after experimental infection. In summary, our study provides limited evidence to support multiple modes of WNV persistence in southern California. Continued transmission and vertical transmission by Culex p. quinquefasciatus Say seem likely candidates for further study.
Journal of Medical Entomology | 2003
Laura B. Goddard; Amy E. Roth; William K. Reisen; Thomas W. Scott
Abstract Three California Culex species previously identified as efficient laboratory vectors of West Nile (WN) virus were tested for their capability to vertically transmit WN virus. Wild-caught Culex pipiens pipiens L., Culex pipiens quinquefasciatus Say, and two populations of Culex tarsalis Coquillett females were inoculated intrathoracically with 102.7 ± 0.1 plaque-forming units of WN virus. F1 progeny were reared at 18°C and subsequently tested as adults for infectious virus on Vero cell culture. Virus was not detected in 197 pools comprising 4,884 Cx. p. pipiens. The minimum filial infection rate (MFIR) for Cx. p. quinquefasciatus was ≈3.0/1,000 for 665 progeny tested in 28 pools. There was no virus detected in 102 pools of 2,453 progeny from Cx. tarsalis collected in Riverside County. The MFIR for Cx. tarsalis collected in Yolo County was ≈ 6.9/1,000 for 2,165 progeny tested in 86 pools. Mosquito progeny infected vertically during the fall could potentially serve as a mechanism for WN virus to overwinter and initiate horizontal transmission the following spring.
Journal of Medical Entomology | 2009
William K. Reisen; Brian D. Carroll; Richard Takahashi; Ying Fang; Sandra Garcia; Vincent M. Martinez; Rob Quiring
ABSTRACT West Nile virus (WNV) has remained epidemic in Kern County, CA, since its introduction in 2004 through 2007 when the human case annual incidence increased from 6–8 to 17 per 100,000, respectively. The 2007 increase in human infection was associated with contradicting surveillance indicators, including severe drought, warm spring but cool summer temperature anomalies, decreased rural and urban mosquito abundance but increased early season infection in urban Culex quinquefasciatus Say, moderate avian “herd immunity,” and declines in the catch of competent (western scrub-jay and house finch) and noncompetent (California quail and mourning dove) avian species. The decline in these noncompetent avian hosts may have increased contact with competent avian hosts and perhaps humans. The marked increase in home foreclosures and associated neglected swimming pools increased urban mosquito production sites, most likely contributing to the urban mosquito population and the WNV outbreak within Bakersfield. Coalescing five surveillance indicators into a risk assessment score measured each half month provided 2- to 6-wk early warning for emergency planning and was followed consistently by the onset of human cases after reaching epidemic conditions. St. Louis encephalitis virus (SLEV) antibody was detected rarely in wild birds but not mosquitoes or sentinel chickens, indicating that previously infected birds were detected in Kern County, but SLEV reintroduction was not successful. In contrast, western equine encephalitis virus (WEEV) was detected during 3 of 5 yr in Culex tarsalis Coquillett, sentinel chickens, and wild birds, but failed to amplify to levels where tangential transmission was detected in Aedes mosquitoes or humans. A comparison of transmission patterns in Kern County to Coachella Valley in the southeastern desert of California showed the importance of mosquito phenology and spatial distribution, corvids, or other avian “super spreaders” and anthropogenic factors in WNV epidemiology.