William Ka Kei Wu
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Ka Kei Wu.
Oncogene | 2010
William Ka Kei Wu; Chung Wa Lee; C. H. Cho; Daiming Fan; Kaichun Wu; Jun Yu; J J Y Sung
Gastric carcinogenesis is a multistep process involving genetic and epigenetic alteration of protein-coding proto-oncogenes and tumor-suppressor genes. Recent discoveries have shed new light on the involvement of a class of noncoding RNA known as microRNA (miRNA) in gastric cancer. A substantial number of miRNAs show differential expression in gastric cancer tissues. Genes coding for these miRNAs have been characterized as novel proto-oncogenes and tumor-suppressor genes based on findings that these miRNAs control malignant phenotypes of gastric cancer cells. In this connection, miRNA dysregulation promotes cell-cycle progression, confers resistance to apoptosis, and enhances invasiveness and metastasis. Moreover, certain polymorphisms in miRNA genes are associated with increased risks for atrophic gastritis and gastric cancer, whereas circulating levels of miRNAs may serve as biomarkers for early diagnosis. Several miRNAs have also been shown to correlate with gastric cancer progression, and thus may be used as prognostic markers. Elucidating the biological aspects of miRNA dysregulation may help us better understand the pathogenesis of gastric cancer and promote the development of miRNA-directed therapeutics against this deadly disease.
Oncogene | 2012
William Ka Kei Wu; Seth B. Coffelt; C. H. Cho; Xiaojuan Wang; Chung Wa Lee; Francis K.L. Chan; Jun Yu; J J Y Sung
Autophagy, hallmarked by the formation of double-membrane bound organelles known as autophagosomes, is a lysosome-dependent pathway for protein degradation. The role of autophagy in carcinogenesis is context dependent. As a tumor-suppressing mechanism in early-stage carcinogenesis, autophagy inhibits inflammation and promotes genomic stability. Moreover, disruption of autophagy-related genes accelerates tumorigenesis in animals. However, autophagy may also act as a pro-survival mechanism to protect cancer cells from various forms of cellular stress. In cancer therapy, adaptive autophagy in cancer cells sustains tumor growth and survival in face of the toxicity of cancer therapy. To this end, inhibition of autophagy may sensitize cancer cells to chemotherapeutic agents and ionizing radiation. Nevertheless, in certain circumstances, autophagy mediates the therapeutic effects of some anticancer agents. Data from recent studies are beginning to unveil the apparently paradoxical nature of autophagy as a cell-fate decision machinery. Taken together, modulation of autophagy is a novel approach for enhancing the efficacy of existing cancer therapy, but its Janus-faced nature may complicate the clinical development of autophagy modulators as anticancer therapeutics.
Oncogene | 2012
G Zhu; Ying Wang; B Huang; J Liang; Y Ding; A Xu; William Ka Kei Wu
P21-activated kinase 1 (PAK1) is associated with colon cancer progression and metastasis, whereas the molecular mechanism remains elusive. Here, we show that downregulation of PAK1 in colon cancer cells reduces total β-catenin level, as well as cell proliferation. Mechanistically, PAK1 directly phosphorylates β-catenin proteins at Ser675 site and this leads to more stable and transcriptional active β-catenin. Corroborating these results, PAK1 is required for full Wnt signaling, and superactivation of β-catenin is achieved by simultaneous knockdown of adenomatous polyposis coli protein and activation of PAK1. Moreover, we show that Rac1 functions upstream of PAK1 in colon cancer cells and contributes to β-catenin phosphorylation and accumulation. We conclude that a Rac1/PAK1 cascade controls β-catenin S675 phosphorylation and full activation in colon cancer cells. Supporting this conclusion, overexpression of PAK1 is observed in 70% of colon cancer samples and is correlated with massive β-catenin accumulation.
Cancer Letters | 2010
William Ka Kei Wu; Joseph Jao Yiu Sung; Chung Wa Lee; Jun Yu; Chi Hin Cho
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risks for esophageal, gastric and colon cancers as well as other solid tumors. The antitumor effect of NSAIDs is mediated through cyclooxygenase-2 (COX-2)-dependent and -independent regulation of oncogenic and tumor-suppressive pathways. Recent discoveries have shed new light on the regulation of COX-2 at the molecular level in these cancers. Moreover, prostaglandin E(2) (PGE(2)), a COX-2-derived eicosanoid, has been found to affect numerous tumorigenic processes. In this connection, PGE(2) activates multiple intracellular signaling pathways, including (1) transactivation of epidermal growth factor receptor (EGFR); (2) protein kinase C-dependent, EGFR-independent activation of extracellular signal-regulated kinase (ERK) and the transcription factors activator protein-1 and c-Myc; (3) G-protein-mediated activation of beta-catenin/TCF-dependent transcription. Activation of these signaling pathways by PGE(2) is mediated by EP receptors whose inhibitors suppress gastrointestinal carcinogenesis. Taken together, COX-2 expression is dysregulated in many types of cancer and COX-2-derived PGE(2) elicits multiple oncogenic signals to promote carcinogenesis. Targeting PGE(2) signaling by EP receptor antagonists holds promise for the development of targeted therapy for the treatment of cancer.
Cancer Letters | 2010
William Ka Kei Wu; Chi Hin Cho; Chung W. Lee; Daiming Fan; Kaichun Wu; Jun Yu; Joseph J.Y. Sung
The pathogenesis of gastric cancer is complex and related to multiple factors. Dysregulation of intracellular signaling pathways represents a common pathogenic mechanism and may be amenable to drug targeting. Multiple well-established oncogenic pathways, such as those mediated by cell cycle regulators, nuclear factor-kappaB, cyclooxygenase-2 and epidermal growth factor receptor are implicated in gastric carcinogenesis. Emerging evidence also underscores the importance of signaling pathways involved in the developmental process, including transforming growth factor-beta/bone morphogenetic protein signaling, Wnt/beta-catenin signaling, Hedgehog signaling and Notch signaling. Understanding their biological significance will provide a rational basis for drug development. Their relative importance and cross-talk in gastric carcinogenesis, however, are still not completely understood and warrant further investigation.
Carcinogenesis | 2011
William Ka Kei Wu; Priscilla T. Y. Law; Chung W. Lee; Chi Hin Cho; Daiming Fan; Kaichun Wu; Jun Yu; Joseph J.Y. Sung
Colon carcinogenesis represents a stepwise progression from benign polyps to invasive adenocarcinomas and distant metastasis. It is believed that these pathologic changes are contributed by aberrant activation or inactivation of protein-coding proto-oncogenes and tumor suppressor genes. However, recent discoveries in microRNA (miRNA) research have reshaped our understanding of the role of non-protein-coding genes in carcinogenesis. In this regard, a remarkable number of miRNAs exhibit differential expression in colon cancer tissues. These miRNAs alter cell proliferation, apoptosis and metastasis through their interactions with intracellular signaling networks. From a clinical perspective, polymorphisms within miRNA-binding sites are associated with the risk for colon cancer, whereas miRNAs isolated from feces or blood may serve as biomarkers for early diagnosis. Altered expression of miRNA or polymorphisms in miRNA-related genes have also been shown to correlate with patient survival or treatment outcome. With further insights into miRNA dysregulation in colon cancer and the advancement of RNA delivery technology, it is anticipated that novel miRNA-based therapeutics will emerge.
Clinical Gastroenterology and Hepatology | 2009
Kelvin K.F. Tsoi; Carol Y.Y. Pau; William Ka Kei Wu; Francis K.L. Chan; Sian Griffiths; Joseph J.Y. Sung
BACKGROUND & AIMS Smoking has been implicated in many malignant diseases, but its association with colorectal cancer (CRC) is controversial. We quantitatively evaluated the relation between smoking and incidence of CRC in a meta-analysis of cohort studies. METHODS Full publications of prospective cohort studies were identified in MEDLINE and EMBASE from 1950 to 2008. Subjects were classified as current smokers, former smokers, or never smokers. The quantity of smoking was assessed by number of cigarettes per day, years of smoking, and pack-years. The reported relative risks of CRC were pooled by random-effects model. Sensitivity analysis was conducted, and publication bias was evaluated. RESULTS A total of 1,463,796 subjects were recruited in 28 prospective cohorts from America, Europe, and Asia, with median follow-up of 13 years (range, 4-30 years). Current smokers showed a modestly higher risk of CRC (relative risk [RR], 1.20; 95% confidence interval [CI], 1.10-1.30) than never smokers. The risk of CRC among male smokers (RR, 1.38; 95% CI, 1.22-1.56) was more significant than among female smokers (RR, 1.06; 95% CI, 0.95-1.19). Rectal cancer was more closely related to smoking (RR, 1.36; 95% CI, 1.15-1.61) than colonic cancer. Former smokers still carried a higher CRC risk than never smokers. The increased risk of CRC was related to cigarettes per day, longer years of smoking, or larger pack-years. CONCLUSIONS Smoking was associated with a significantly increased risk of CRC. The associated risk was higher for men and for rectal cancers. The association of tobacco consumption and CRC risk appeared to be dose-related.
PLOS ONE | 2013
Xin Yu; Zheng Li; Jianxiong Shen; William Ka Kei Wu; Jinqian Liang; Xisheng Weng; Qiu Gx
Aberrant proliferation of nucleus pulposus cell is implicated in the pathogenesis of intervertebral disc degeneration. Recent findings revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many pathological conditions. Here, we showed that miR-10b was dramatically upregulated in degenerative nucleus pulposus tissues when compared with nucleus pulposus tissues isolated from patients with idiopathic scoliosis. Moreover, miR-10b levels were associated with disc degeneration grade and downregulation of HOXD10. In cultured nucleus pulposus cells, miR-10b overexpression stimulated cell proliferation with concomitant translational inhibition of HOXD10 whereas restored expression of HOXD10 reversed the mitogenic effect of miR-10b. MiR-10b-mediated downregulation of HOXD10 led to increased RhoC expression and Akt phosphorylation. Either knockdown of RhoC or inhibition of Akt abolished the effect of miR-10b on nucleus pulposus cell proliferation. Taken together, aberrant miR-10b upregulation in intervertebral disc degeneration could contribute to abnormal nucleus pulposus cell proliferation through derepressing the RhoC-Akt pathway by targeting HOXD10. Our study also underscores the potential of miR-10b and the RhoC-Akt pathway as novel therapeutic targets in intervertebral disc degeneration.
Gut | 2017
J Yu; Qiang Feng; Dongya Zhang; Qiaoyi Liang; Qin Y; Longqing Tang; Zhao H; Jan Stenvang; Yingrui Li; Xiaojuan Wang; Xuenian Xu; Nan Chen; William Ka Kei Wu; Jumana Y. Al-Aama; Hans Jørgen Nielsen; Pia Kiilerich; Benjamin Anderschou Holbech Jensen; Yau To; Zhou Lan; Huijue Jia; Jinxiu Li; Liang Xiao; Thomas Y. Lam; Siew C. Ng; Alfred Sl Cheng; Vincent Wai-Sun Wong; F. K. L. Chan; Yang H; Lise Madsen; Christian Datz
Objective To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. Design We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. Results Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I–II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. Conclusions We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
Molecular Cancer Research | 2005
Vivian Y. Shin; William Ka Kei Wu; Kent-Man Chu; Helen Wong; Emily Kai Yee Lam; Emily Kin Ki Tai; Marcel W.L. Koo; C. H. Cho
Blockade of angiogenesis is a promising strategy to suppress tumor growth, invasion, and metastasis. Vascular endothelial growth factor (VEGF), which binds to tyrosine kinase receptors [VEGF receptors (VEGFR) 1 and 2], is the mediator of angiogenesis and mitogen for endothelial cells. Cyclooxygenase-2 (COX-2) plays an important role in the promoting action of nicotine on gastric cancer growth. However, the action of nicotine and the relationship between COX-2 and VEGF/VEGFR system in tumorigenesis remain undefined. In this study, the effects of nicotine in tumor angiogenesis, invasiveness, and metastasis were studied with sponge implantation and Matrigel membrane models. Nicotine (200 μg/mL) stimulated gastric cancer cell proliferation, which was blocked by SC-236 (a highly selective COX-2 inhibitor) and CBO-P11 (a VEGFR inhibitor). This was associated with decreased VEGF levels as well as VEGFR-2 but not VEGFR-1 expression. Topical injection of nicotine enhanced tumor-associated vascularization, with a concomitant increase in VEGF levels in sponge implants. Again, application of SC-236 (2 mg/kg) and CBO-P11 (0.4 mg/kg) partially attenuated vascularization by ∼30%. Furthermore, nicotine enhanced tumor cell invasion through the Matrigel membrane by 4-fold and promoted migration of human umbilical vein endothelial cells in a cocultured system with gastric cancer cells. The activity of matrix metalloproteinases 2 and 9 and protein expressions of plasminogen activators (urokinase-type plasminogen activator and its receptor), which are the indicators of invasion and migration processes, were increased by nicotine but blocked by COX-2 and VEGFR inhibitors. Taken together, our results reveal that the promoting action of nicotine on angiogenesis, tumor invasion, and metastasis is COX-2/VEGF/VEGFR dependent.