William L. Bauerle
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William L. Bauerle.
Ecological Applications | 2009
Ryan J. Klos; G. Geoff Wang; William L. Bauerle; James R. Rieck
Drought frequency and intensity has been predicted to increase under many climate change scenarios. It is therefore critical to understand the response of forests to potential climate change in an effort to mitigate adverse impacts. The purpose of this study was to explore the regional effects of different drought severities on tree growth and mortality. Specifically, we investigated changes in growth and mortality rates across the southeastern United States under various drought and stand conditions using 1991-2005 Forest Health and Monitoring (FHM) plot data from Alabama, Georgia, and Virginia. Drought effects were examined for three species groups (pines, oaks, and mesophytic species) using the Palmer drought severity index (PDSI) as an indicator of drought severity. Stand variables, including total basal area, total tree density, tree species richness, slope, and stand age, were used to account for drought effects under varying stand conditions. The pines and mesophytic species exhibited significant reductions in growth rate with increasing drought severity. However, no significant difference in growth rate was observed within the oak species group. Mean mortality rates within the no-drought class were significantly lower than those within the other three drought classes, among which no significant differences were found, for both pines and mesophytic species. Mean mortality rates were not significantly different among drought classes for oaks. Total basal area, total tree density, and stand age were negatively related to growth and positively related to mortality, which suggests that older and denser stands are more susceptible to drought damage. The effect of basal area on growth increased with drought severity for the oak and mesophytic species groups. Tree species richness was negatively related to mortality for the pine and mesophytic species groups, indicating that stands with more species suffer less mortality. Slope was positively related to mortality within the mesophytic species group, and its effect increased with drought severity, indicating a higher mortality on sites of greater slope during severe-drought conditions. Our findings indicate that pines and mesophytic species are sensitive to drought, while oaks are tolerant of drought. The observed differential growth and mortality rates among species groups may alter the species composition of southeastern U.S. forests if drought episodes become more frequent and/or intense due to climate change. The significant effects of stand conditions on drought responses observed in our study also suggest that forest management may be used as a tool to mitigate drought effects.
Proceedings of the National Academy of Sciences of the United States of America | 2012
William L. Bauerle; Ram Oren; Danielle A. Way; Song S. Qian; Paul C. Stoy; Peter E. Thornton; Joseph D. Bowden; Forrest M. Hoffman; Robert F. Reynolds
Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO2 cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y−1), resulting in a >3% (∼2 PgC y−1) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.
New Phytologist | 2008
Taryn L. Bauerle; David R. Smart; William L. Bauerle; Christine M. Stockert; David M. Eissenstat
* Linkages between plant growth rate and root responses to soil moisture heterogeneity were investigated. * Root dynamics were studied using genetically identical shoots (Vitis vinifera cv. Merlot) with genetically distinct root systems that promote higher (HSV) and lower (LSV) shoot growth rates (1103P and 101-14 Mgt, respectively). Three quantities of irrigation replenished different amounts of evapotranspiration (0, 40 and 100%ET(c)) in a California vineyard. * Roots of HSV vines exhibited more plasticity, as indicated by greater preferential growth in irrigated soil during the summer, and a larger shift in root diameter with a change in soil moisture than LSV vines. Higher tolerance of low soil moisture was not observed in LSV roots--root survivorship was similar for the two rootstocks. LSV vines produced a large fraction of its roots during the winter months and increased root density over the study, while HSV vines produced roots mainly in summer and only exhibited a high initial peak in root biomass in the first year. * These results demonstrated that a plant of higher vigor has greater morphological plasticity in response to lateral heterogeneity in soil moisture but similar tolerance to moisture stress as indicated by root survivorship in dry soil.
Agricultural and Forest Meteorology | 2002
William L. Bauerle; Christopher J. Post; Michael F. McLeod; Jerry B. Dudley; Joe E. Toler
This study was designed to estimate transpiration in a container nursery under both irrigated and water stressed conditions using a biologically based canopy model. The model, MAESTRA, was parameterized with a suite of physiological measurements and an explicit response function for soil moisture deficit was incorporated. The model was validated against transpiration measurements monitored by the stem heat balance method in both irrigated and non-irrigated plots. Distinct disconnects between estimated and measured values were found at high soil moisture deficits. The data justify the incorporation of a soil moisture component to simulate transpiration of plants with root zones in limited soil volumes. The agreement between measured and modelled canopy transpiration separated at a soil moisture deficit of 0.85 or greater, however, estimates of daily transpiration simulated by the model were in agreement with sap-flow measurements when water was not limiting. The data indicate that cuticular conductance at soil moisture deficits ≤0.85 may explain the separation in model estimates and actual plant water loss.
American Journal of Botany | 2007
David J. Weston; William L. Bauerle; Ginger A. Swire-Clark; Brandon d. Moore; W. V. Baird
The lability of Rubisco activase function is thought to have a major role in the decline of leaf photosynthesis under moderate heat (<35°C). To investigate this further, we characterized Rubisco activase and explored its role in the previously demonstrated thermal acclimation and inhibition of two genotypes of Acer rubrum originally collected from Florida (FL) and Minnesota (MN). When plants were grown at 33/25°C (day/night) for 21 d, the FL genotype compared to the MN genotype maintained about a two-fold increase in leaf photosynthetic rates at 33-42°C and had a 22% increase in the maximal rate of Rubisco carboxylation (V(cmax)) at 33°C under nonphotorespiratory conditions. Both genotypes had two leaf Rca transcripts, likely from equivalent alternative splicing events. The RCA1 and RCA2 proteins increased modestly in FL plants under warmer temperature, while only RCA2 protein increased in MN plants. Rubisco large subunit (RbsL) protein abundance was relatively unaffected in either genotype by temperature. These results support the idea that Rubisco activase, particularly the ratio of Rubisco activase to Rubisco, may play a role in the photosynthetic heat acclimation in A. rubrum and may have adaptive significance. This mechanism alone is not likely to entirely explain the thermotolerance in the FL genotype, and future research on adaptive mechanisms to high temperatures should consider activase function in a multipathway framework.
Journal of Experimental Botany | 2011
William L. Bauerle; Joseph D. Bowden
A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions.
Planta | 2011
Taryn L. Bauerle; Michela Centinari; William L. Bauerle
We investigated responses of plant growth rate, hydraulic resistance, and xylem cavitation in scion-rootstock-combinations of Malus domestica L. cv. Honeycrisp scions grafted onto a high-shoot vigor (HSV) rootstock, (semi-dwarfing Malling111), or onto a low-shoot vigor (LSV) rootstock, (dwarfing Budagovsky 9), in response to substrate moisture limitation. Adjustments in xylem vessel diameter and frequency were related to hydraulic resistance measurements for high- versus low- vigor apple trees. We observed a greater tolerance to water deficit in the high-shoot compared to the low-shoot vigor plants under water deficit as evidenced by increased growth in several plant organs, and greater scion anatomical response to limited water availability with ca. 25% increased vessel frequency and ca. 28% narrower current season xylem ring width. Whereas water limitation resulted in greater graft union hydraulic resistance of high-shoot vigor trees, the opposite was true when water was not limiting. The graft union of the low-shoot vigor rootstock exhibited higher hydraulic resistance under well-watered conditions. Scions of high-shoot vigor rootstocks had fewer embolisms at low plant water status compared to scions of low-shoot vigor rootstocks, presumably as a result of large differences in xylem vessel diameter. Our results demonstrated that anatomical differences were related to shifts in hydraulic conductivity and cavitation events, a direct result of grafting, under limited soil water.
BMC Genomics | 2013
Richard S. Fletcher; Jack L. Mullen; Seth Yoder; William L. Bauerle; Gretchen Reuning; Saunak Sen; Eli Meyer; Thomas E. Juenger; John K. McKay
BackgroundThe identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery.ResultsIn this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait.ConclusionsThe present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.
Journal of Experimental Botany | 2009
William L. Bauerle; Joseph D. Bowden; G. Geoff Wang; Mohamed A. Shahba
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux.
Plant Cell and Environment | 2017
Grace L. Miner; William L. Bauerle; Dennis D. Baldocchi
A common approach for estimating fluxes of CO2 and water in canopy models is to couple a model of photosynthesis (An ) to a semi-empirical model of stomatal conductance (gs ) such as the widely validated and utilized Ball-Berry (BB) model. This coupling provides an effective way of predicting transpiration at multiple scales. However, the designated value of the slope parameter (m) in the BB model impacts transpiration estimates. There is a lack of consensus regarding how m varies among species or plant functional types (PFTs) or in response to growth conditions. Literature values are highly variable, with inter-species and intra-species variations of >100%, and comparisons are made more difficult because of differences in collection techniques. This paper reviews the various methods used to estimate m and highlights how variations in measurement techniques or the data utilized can influence the resultant m. Additionally, this review summarizes the reported responses of m to [CO2 ] and water stress, collates literature values by PFT and compiles nearly three decades of values into a useful compendium.