Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William L. Henry is active.

Publication


Featured researches published by William L. Henry.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Distinct arginase isoforms expressed in primary and transformed macrophages : regulation by oxygen tension

Claudine A. Louis; Jonathan S. Reichner; William L. Henry; Balduino Mastrofrancesco; Tomomi Gotoh; Masataka Mori; Jorge E. Albina

Experiments were performed to identify arginase isoforms expressed in primary and transformed rodent macrophages and to determine the molecular mechanisms for the previously observed increase in arginase activity in macrophages cultured in hypoxia or anoxia. Results demonstrate the following: 1) mRNA and protein for hepatic-type AI arginase are expressed in primary cultures of rat and mouse peritoneal macrophages and are enhanced seven- and ninefold, respectively, by lipopolysaccharide (LPS). 2) mRNA for extrahepatic-type AII arginase is constitutively expressed in mouse, but not rat, peritoneal macrophages and is detected in RAW264.7 cells after LPS treatment; neither J774A.1 nor P388D1 cells contain arginase mRNA. 3) AI arginase mRNA, arginase activity in cell lysates, andl-arginine flux through arginase in intact cells are all increased in rat wound-derived and mouse peritoneal macrophages by hypoxic or anoxic culture; AII arginase mRNA is, in contrast, suppressed >50% by O2deprivation. 4) Expression of thel-arginine transporter mCAT-2 is increased greater than twofold by reduced O2 culture. These results demonstrate substantial variability in arginase isoform expression among primary and transformed rodent macrophages. They also identify AI and AII arginase and the mCAT-2 l-arginine transporter as O2-regulated genes.


American Journal of Pathology | 1999

Molecular and Metabolic Evidence for the Restricted Expression of Inducible Nitric Oxide Synthase in Healing Wounds

Jonathan S. Reichner; Adriana J. Meszaros; Claudine A. Louis; William L. Henry; Balduino Mastrofrancesco; Barbara-Anne Martin; Jorge E. Albina

Tissue injury initiates a temporally ordered sequence of local cellular and metabolic responses presumably necessary for successful repair. Previous investigations demonstrated that metabolic evidence for nitric oxide synthase (NOS) activity is detectable in wounds only during the initial 48 to 72 hours of the repair process. Present results identify the cell types contributing inducible NOS (iNOS) to experimental wounds in rats. iNOS antigen was expressed in most macrophages present in wounds 6 to 24 hours after injury, and these cells exhibited NAPDH diaphorase and NOS activity. Polymorphonuclear leukocytes contained little iNOS antigen and no NADPH diaphorase activity and were minimally able to convert L-arginine to L-citrulline. The frequency of iNOS-positive macrophages declined on days 3 and 5 after wounding. By day 10, most macrophages in the wound were negative for iNOS. These cells, however, acquired iNOS antigen and activity in culture. Wound fluids, but not normal rat serum, suppressed the induction of iNOS during culture. Findings indicate that the expression of iNOS in healing wounds is restricted to macrophages present during the early phases of repair and that components of wound fluid suppress the induction of iNOS in macrophages in late wounds. Polymorphonuclear leukocytes contribute little iNOS activity to the healing wound.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Regulation of arginase isoforms I and II by IL-4 in cultured murine peritoneal macrophages

Claudine A. Louis; Vino Mody; William L. Henry; Jonathan S. Reichner; Jorge E. Albina

Macrophages can express two arginase isoforms with distinct subcellular localization (cytosolic AI and mitochondrial AII). These isoforms are products of different genes and are capable of differential induction. Experiments were performed to identify the specific arginase isoforms induced by interleukin (IL)-4, a Th2 cytokine shown by others to increase arginase activity in macrophages, and serum. Results indicate IL-4, in concert with serum, increases AI, but not AII, mRNA in cultured murine macrophages. Moreover, they show serum to induce both arginase isoforms and to be required for maximal AI induction by IL-4. Together with the enhanced expression of AI, IL-4 induced the expression of the cationic amino acid transporter MCAT-2 and increased L-arginine transport into the cells. Present results confirm, then, specificity in the ability of macrophage arginase isoforms to be induced by different stimuli. Moreover, they suggest that a decrease in intracellular L-arginine concentration resulting from its consumption by arginase may be repaired by concurrent increases in L-arginine influx into the cell.


Journal of Immunology | 2005

Modulation of Macrophage Phenotype by Soluble Product(s) Released from Neutrophils

Jean M. Daley; Jonathan S. Reichner; Eric J. Mahoney; Laura Manfield; William L. Henry; Balduino Mastrofrancesco; Jorge E. Albina

The regulation of macrophage phenotype by neutrophils was studied in the s.c. polyvinyl alcohol sponge wound model in mice made neutropenic by anti-Gr-1 Ab, as well as in cell culture. Wounds in neutropenic mice contained 100-fold fewer neutrophils than those in nonneutropenic controls 1 day after sponge implantation. Wound fluids from neutropenic mice contained 68% more TNF-α, 168% more IL-6, and 61% less TGF-β1 than those from controls. Wound fluid IL-10 was not different between the two groups, and IL-4 was not detected. Intracellular TNF-α staining was greater in cells isolated from neutropenic wounds than in those from control wounds. The hypothesis that wound neutrophil products modulate macrophage phenotype was tested in Transwell cocultures of LPS-stimulated J774A.1 macrophages and day 1 wound cells (84% neutrophils/15% macrophages). Overnight cocultures accumulated 60% less TNF-α and IL-6 than cultures of J774A.1 alone. The suppression of cytokine release was mediated by a soluble factor(s), because culture supernatants from wound cells inhibited TNF-α and IL-6 release from LPS-stimulated J774A.1 cells. Culture supernatants from purified wound neutrophils equally suppressed TNF-α release from LPS-stimulated J774A.1 cells. Wound cell supernatants also suppressed TNF-α and superoxide release from murine peritoneal macrophages. The TNF-α inhibitory factor has a molecular mass <3000 Da and is neither PGE2 nor adenosine. The present findings confirm a role for neutrophils in the regulation of innate immune responses through modulation of macrophage phenotype.


Journal of Immunology | 2008

Prostaglandin E2 Suppresses Lipopolysaccharide-Stimulated IFN-β Production

X. Julia Xu; Jonathan S. Reichner; Balduino Mastrofrancesco; William L. Henry; Jorge E. Albina

Macrophages activate the production of cytokines and chemokines in response to LPS through signaling cascades downstream from TLR4. Lipid mediators such as PGE2, which are produced during inflammatory responses, have been shown to suppress MyD88-dependent gene expression upon TLR4 activation in macrophages. The study reported here investigated the effect of PGE2 on TLR3- and TLR4-dependent, MyD88-independent gene expression in murine J774A.1 macrophages, as well as the molecular mechanism underlying such an effect. We demonstrate that PGE2 strongly suppresses LPS-induced IFN-β production at the mRNA and protein levels. Poly (I:C)-induced IFN-β and LPS-induced CCL5 production were also suppressed by PGE2. The inhibitory effect of PGE2 on LPS-induced IFN-β expression is mediated through PGE2 receptor subtypes EP2 and EP4, and mimicked by the cAMP analog 8-Br-cAMP as well as by the adenylyl cyclase activator forskolin. The downstream effector molecule responsible for the cAMP-induced suppressive effect is exchange protein directly activated by cAMP (Epac) but not protein kinase A. Moreover, data demonstrate that Epac-mediated signaling proceeds through PI3K, Akt, and GSK3β. In contrast, PGE2 inhibits LPS-induced TNF-α production in these cells through a distinct pathway requiring protein kinase A activity and independent of Epac/PI3K/Akt. In vivo, administration of a cyclooxygenase inhibitor before LPS injection resulted in enhanced serum IFN-β concentration in mice. Collectively, data demonstrate that PGE2 is a negative regulator for IFN-β production in activated macrophages and during endotoxemia.


PLOS ONE | 2014

The Monocyte to Macrophage Transition in the Murine Sterile Wound

Meredith J. Crane; Jean M. Daley; Olivier van Houtte; Samielle K. Brancato; William L. Henry; Jorge E. Albina

The origin of wound repair macrophages is incompletely defined and was examined here in sterile wounds using the subcutaneous polyvinyl alcohol sponge implantation model in mice. Phenotypic analysis identified F4/80+Ly6ChiCD64+MerTK– monocytes and F4/80+Ly6ClowCD64+MerTK+ macrophages in the wound. Circulating monocytes were the precursors of inflammatory Ly6Chi wound monocytes. Ly6ClowMerTK+ macrophages appeared later, expressed CD206, CD11c, and MHC class II, produced cytokines consistent with repair function, and lacked a gene expression profile compatible with mesenchymal transition or fibroblastic transdifferentiation. Data also demonstrated that Ly6Chi wound cells were precursors of Ly6Clow macrophages, although monocytes did not undergo rapid maturation but rather persisted in the wound as Ly6ChiMerTK– cells. MerTK-deficient mice were examined to determine whether MerTK-dependent signals from apoptotic cells regulated the maturation of wound macrophages. MerTK-deficient mice had day 14 cell compositions that resembled more immature wounds, with a smaller proportion of F4/80+ cells and higher frequencies of Ly6G+ neutrophils and Ly6Chi monocytes. The cytokine profile and number of apoptotic cells in day 14 wounds of MerTK-deficient mice was unaffected despite the alterations in cell composition. Overall, these studies identified a differentiation pathway in response to sterile inflammation in which monocytes recruited from the circulation acquire proinflammatory function, persist in the wound, and mature into repair macrophages.


American Journal of Pathology | 2002

Bacterial Colonization and the Expression of Inducible Nitric Oxide Synthase in Murine Wounds

Eric J. Mahoney; Jonathan S. Reichner; Leslie Robinson Bostom; Balduino Mastrofrancesco; William L. Henry; Jorge E. Albina

The expression of inducible nitric oxide synthase (iNOS) in two different murine wound models was investigated. Animals were subjected to either full-thickness linear skin incision with subcutaneous implantation of sterile polyvinyl alcohol sponges, or to 1.5 x 1.5-cm dorsal skin excision. Reverse transcriptase-polymerase chain reaction detected iNOS mRNA in all cell samples retrieved from the sponges. Immunoblotting of lysates of inflammatory cells harvested from the sponges failed to detect iNOS protein, and immunohistochemistry of the incisional wound was mildly positive. Inflammatory cells of excisional wounds stained strongly positive for iNOS. Cutaneous wounds were found to be colonized with Staphylococcus aureus. The detection of iNOS in cells from sponges inoculated in vivo with heat-killed bacteria and the reduction of immunohistochemical signal for iNOS in excisional wounds of animals treated with antibiotics support a role of bacteria in the induction of iNOS in wounds. The expression of iNOS in excisional wounds requires interferon-gamma and functional lymphocytes because interferon-gamma knockout and SCID-Beige mice exhibited attenuated iNOS staining in excisional wounds. The expression of iNOS in the inflammatory cells of murine wounds is a response to bacterial colonization and not part of the normal repair process elicited by sterile tissue injury.


Journal of Surgical Research | 1984

Evidence for aerobic glycolysis in λ-carrageenan-wounded skeletal muscle

Michael D. Caldwell; Jeffry Shearer; Allen Morris; Balduino Mastrofrancesco; William L. Henry; Jorge E. Albina

Abstract Classically, increased lactate production in wounded tissue is ascribed to anaerobic glycolysis although its oxygen consumption has been found to be similar to normal tissue. This apparent inconsistency was studied in a standardized isolated perfused wound model. Male Sprague-Dawley rats were wounded (group W) with intramuscular injections of λ-carrageenan and fed ad lib.; not wounded and pair fed to the decreased food intake of the wounded animals (group PFC); or not wounded and fed ad lib. (group ALC). After 5 days, the hindlimbs of animals from each group were either perfused using a standard perfusate with added [U-14C]glucose or [1-14C]pyruvate or assayed for the tissue content of lactate and pyruvate. In addition, the effect of a 30% hemorrhage on the tissue lactate and pyruvate concentration was examined. Wounding increased glucose uptake and lactate production by 100 and 96%, respectively, above that seen in ALC animals. Oxygen consumption was unchanged by wounding (5.74, 5.14, and 5.83 μmole/min/100 g in W, PFC, and ALC, respectively). Glucose and pyruvate oxidation were also unaltered among the groups. Hemorrhage resulted in a comparable increase in lactate and pyruvate in tissue from wounded and pair-fed control animals (above those concentrations found in tissue harvested without preexisting hemorrhage). As a consequence, the same relationship in L/P ratio was maintained after hemorrhage. Taken together, these results confirm the presence of aerobic glycolysis in wounded tissue (unchanged oxygen consumption, glucose, and pyruvate oxidation). In addition, pyruvate dehydrogenase activity in the wound was apparently the same as that found in muscle from pair-fed control animals.


Journal of Trauma-injury Infection and Critical Care | 1985

Macrophage interaction with skeletal muscle: a potential role of macrophages in determining the energy state of healing wounds

Allen Morris; William L. Henry; Jeffry D. Shearer; Michael D. Caldwell

A decrease in ATP and creatine phosphate (CP) is characteristic of local injury to skeletal muscle. Recent data have suggested adequate potential for high-energy phosphate production in the wounded tissue. Thus, an adequate explanation for the deficit in the high-energy tissue content in wounds was lacking. Since the wound has multiple components (muscle + cellular infiltrate), the tissue content represents the summation of these components. Therefore, a technique to separate these components was designed. Using a 0.5% solution of lambda-carrageenan as the wounding agent, the extensor digitorum longus muscles (EDL) of male Fisher rats were unilaterally wounded with intramuscular injections. Five days later, both wounded and contralateral nonwounded muscles were incubated in a standardized fashion. The groups of EDL were: wounded as described, contralateral nonwounded, or contralateral nonwounded with the addition to the incubate of 6 X 10(6)/ml lambda-carrageenan elicited peritoneal macrophages. Following incubation, the individual component parts of the system (muscle and macrophage) were rapidly frozen and assayed for high-energy phosphate and DNA content. Examination of the high-energy phosphate content of the separate components of a wound demonstrated that macrophages increased the ATP and CP content of normal skeletal muscle. Yet when total high-energy phosphate content was normalized for total DNA (muscle + macrophages) in the reconstituted system, the values approximated those of wounded muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Vestigial respiratory burst activity in wound macrophages

Christopher C. Nessel; William L. Henry; Balduino Mastrofrancesco; Jonathan S. Reichner; Jorge E. Albina

Macrophages from experimental wounds in rats were tested for their capacity to generate reactive oxygen intermediates. Measurements of superoxide and H2O2release, [Formula: see text]-dependent lucigenin chemiluminescence, oxygen consumption, hexose monophosphate shunt flux, and NADPH oxidase activity in cell lysates indicated, at best, the presence of a vestigial respiratory burst response in these cells. The inability of wound cells to release[Formula: see text] was not rekindled by priming with endotoxin or interferon-γ in vivo or in vitro. NADPH oxidase activity in a cell-free system demonstrated that wound macrophage membranes, but not their cytosols, were capable of sustaining maximal rates of [Formula: see text] production when mixed with their corresponding counterparts from human neutrophils. Immune detection experiments showed wound macrophages to be particularly deficient in the cytosolic component of the NADPH oxidase p47- phox. Addition of recombinant p47- phox to the human neutrophil-cell membrane/wound macrophage cytosol cell-free oxidase assay, however, failed to support[Formula: see text] production. Present findings indicate an unexpected deficit of wound macrophages in their capacity to generate reactive oxygen intermediates.Macrophages from experimental wounds in rats were tested for their capacity to generate reactive oxygen intermediates. Measurements of superoxide and H2O2 release, O-2-dependent lucigenin chemiluminescence, oxygen consumption, hexose monophosphate shunt flux, and NADPH oxidase activity in cell lysates indicated, at best, the presence of a vestigial respiratory burst response in these cells. The inability of wound cells to release O-2 was not rekindled by priming with endotoxin or interferon-gamma in vivo or in vitro. NADPH oxidase activity in a cell-free system demonstrated that wound macrophage membranes, but not their cytosols, were capable of sustaining maximal rates of O-2 production when mixed with their corresponding counterparts from human neutrophils. Immune detection experiments showed wound macrophages to be particularly deficient in the cytosolic component of the NADPH oxidase p47-phox. Addition of recombinant p47-phox to the human neutrophil-cell membrane/wound macrophage cytosol cell-free oxidase assay, however, failed to support O-2 production. Present findings indicate an unexpected deficit of wound macrophages in their capacity to generate reactive oxygen intermediates.

Collaboration


Dive into the William L. Henry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge