William L. Kranz
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William L. Kranz.
Environmental Science & Technology | 2012
Shannon L. Bartelt-Hunt; Daniel D. Snow; William L. Kranz; Terry L. Mader; Charles A. Shapiro; Simon J. van Donk; David P. Shelton; David D. Tarkalson; Tian C. Zhang
Supplements and growth promotants containing steroid hormones are routinely administered to beef cattle to improve feeding efficiency, reduce behavioral problems, and enhance production. As a result, beef cattle manure will contain both synthetic steroids as well as a range of endogenous steroids including androgens, estrogens, and progestogens. A two-year controlled study was conducted in which beef cattle were administered steroid hormones via subcutaneous implants and feed additives and the occurrence of 16 endogenous and synthetic steroid hormones and metabolites was evaluated in runoff from beef cattle feedlots and in manure and soil collected from feedlot surfaces. Samples were extracted and analyzed using liquid chromatography tandem mass spectrometryfor metabolites of the synthetic androgen trenbolone acetate, 17α-trenbolone, 17β-trenbolone, for the nonsteroidal semisynthetic estrogen agonist, α-zearalanol, and the synthetic progesterone melengesterol acetate, as well as a wide range of endogeneous estrogens, androgens, and fusarium metabolites. Synthetic steroids including trenbolone metabolites and melengestrol acetate were detected in fresh manure and in feedlot surface soils from cattle administered synthetic steroids at concentrations up to 55 ± 22 ng/g dry weight (dw) (17α-trenbolone) and 6.5 ± 0.4 ng/g dw (melengesterol acetate). Melengesterol acetate was detected in 6% of runoff samples from feedlots holding cattle administered synthetic steroids at concentrations ranging up to 115 ng/L. The presence of melengesterol acetate in runoff from beef cattle feeding operations has not been previously reported. Synthetic steroids were not detected in manure or runoff from control cattle. A wide range of endogenous hormones were detected in runoff and feedlot surface soils and manure from cattle given synthetic steroids and from control cattle, with no statistically significant differences in concentration. These results indicate that runoff from confined animal production facilities is of environmental and public health concern regardless of the use of growth promotants.
Transactions of the ASABE | 2012
Suat Irmak; Michael J. Burgert; Haishun Yang; Kenneth G. Cassman; Daniel T. Walters; William R. Rathje; José O. Payero; Patricio Grassini; Mark S. Kuzila; Kelly J. Brunkhorst; Dean E. Eisenhauer; William L. Kranz; Brandy VanDeWalle; Jennifer M. Rees; Gary L. Zoubek; Charles A. Shapiro; Gregory J. Teichmeier
Irrigated maize is produced on about 3.5 Mha in the U.S. Great Plains and western Corn Belt. Most irrigation water comes from groundwater. Persistent drought and increased competition for water resources threaten long-term viability of groundwater resources, which motivated our research to develop strategies to increase water productivity without noticeable reduction in maize yield. Results from previous research at the University of Nebraska-Lincoln (UNL) experiment stations in 2005 and 2006 found that it was possible to substantially reduce irrigation amounts and increase irrigation water use efficiency (IWUE) and crop water use efficiency (CWUE) (or crop water productivity) with little or no reduction in yield using an irrigation regime that applies less water during growth stages that are less sensitive to water stress. Our hypothesis was that a soil moisture-based irrigation management approach in research fields would give similar results in large production-scale, center-pivot irrigated fields in Nebraska. To test this hypothesis, IWUE, CWUE, and grain yields were compared in extensive on-farm research located at eight locations over two years (16 site-years), representing more than 600 ha of irrigated maize area. In each site-year, two contiguous center-pivot irrigated maize fields with similar topography, soil properties, and crop management practices received different irrigation regimes: one was managed by UNL researchers, and the other was managed by the farmer at each site. Irrigation management in farmer-managed fields relied on the farmers’ traditional visual observations and personal expertise, whereas irrigation timing in the UNL-managed fields was based on pre-determined soil water depletion thresholds measured using soil moisture sensors, as well as crop phenology predicted by a crop simulation model using a combination of real-time (in-season) and historical weather data. The soil moisture-based irrigation regime resulted in greater soil water depletion, which decreased irrigation requirements and enabled more timely irrigation management in the UNL-managed fields in both years (34% and 32% less irrigation application compared with farmer-managed fields in 2007 and 2008, respectively). The average actual crop evapotranspiration (ETC) for the UNL- and farmer-managed fields for all sites in 2007 was 487 and 504 mm, respectively. In 2008, the average UNL and average farmer-managed field had seasonal ETC of 511 and 548 mm, respectively. Thus, when the average of all sites is considered, the UNL-managed fields had 3% and 7% less ETC than the farmer-managed fields in 2007 and 2008, respectively, although the percentage was much higher for some of the farmer-managed fields. In both years, differences in grain yield between the UNL and farmer-managed fields were not statistically significant (p = 0.75). On-farm implementation of irrigation management strategies resulted in a 38% and 30% increase in IWUE in the UNL-managed fields in 2007 and 2008, respectively. On average, the CWUE value for the UNL-managed fields was 4% higher than those in the farmer-managed fields in both years. Reduction in irrigation water withdrawal in UNL-managed fields resulted in
Renewable Agriculture and Food Systems | 1989
Charles A. Shapiro; William L. Kranz; Anne M. Parkhurst
32.00 to
Applied Engineering in Agriculture | 1995
R. W. Weber; Robert Grisso; Charles A. Shapiro; William L. Kranz; J. L. Schinstock
74.10 ha-1 in 2007 and
Journal of Environmental Quality | 2013
Shannon L. Bartelt-Hunt; Shannon Devivo; Leslie J. Johnson; Daniel D. Snow; William L. Kranz; Terry L. Mader; Charles A. Shapiro; Simon J. van Donk; David P. Shelton; David D. Tarkalson; Tian C. Zhang
44.46 to
Agricultural Water Management | 1992
William L. Kranz; Dean E. Eisenhauer; Mary T. Retka
66.50 ha-1 in 2008 in energy saving and additional net return to the farm income. The results from this study can have significant positive implications in future irrigation management of irrigated maize systems in regions with similar soil and crop management practices.
Journal of Environmental Engineering | 2015
Rui Ma; Tian C. Zhang; Shannon L. Bartelt-Hunt; Yong Qi; William L. Kranz; Daniel D. Snow; Terry L. Mader; Charles A. Shapiro; David P. Shelton; Simon J. van Donk; David D. Tarkalson; Steve Ensley
On-farm field demonstrations provide a useful method of technology transfer for researchers and extension specialists, and the proponents of alternative agriculture have adopted on-farm experimentation as an important means to establish the value of sustainable methods. For on-farm research long narrow strips harvested by machine are often employed in place of small hand-harvested plots commonly used at research facilities. The use of this approach, however, could bring the methodology into question if field variation should make determination of statistical differences difficult. Analysis of harvest data from ten irrigated and four dryland site-years for small hand-harvested corn plots and for machine-harvested long narrow strips was conducted to determine the impact of sampling method upon experimental variation. Analyses of variance indicated that six of the ten machine-harvested irrigated sites had significant yield response to applied nitrogen while only one of the ten hand-harvested sites exhibited significant nitrogen effects (P ≤ 0.10). The difference in statistical precision was not a result of increased range in yields, but rather of more consistent yields for each treatment. An economic analysis was performed, and the results indicated that optimum nitrogen rates depended on corn and nitrogen price ratios. When 1989 corn and nitrogen prices were used, the calculated marginal profit levels between the reduced nitrogen and recommended nitrogen rate ranged from
Applied Engineering in Agriculture | 1996
William L. Kranz; D. E. Eisenhauer; A. M. Parkhurst
8.92 to -
Journal of Hazardous Materials | 2017
Sagor Biswas; William L. Kranz; Charles A. Shapiro; Daniel D. Snow; Shannon L. Bartelt-Hunt; Mitiku Mamo; David D. Tarkalson; Tian C. Zhang; David P. Shelton; Simon J. van Donk; Terry L. Mader
8.14 per ha. For the irrigated sites, when experimental variation (F-test of total sum of squares) was compared by harvest method, hand harvest had significantly greater variation than machine harvest in five experiments. Machine harvest was significantly more variable in one comparison. Coefficients of variation for machine harvest were less than for hand harvest in nine of ten irrigated experiments. For the dryland sites, differences between harvest methods were significant in one of four experiments. These data suggest that under certain conditions machine-harvested long narrow strips provide more accurate estimates of treatment differences than do small hand-harvested plots despite potential differences in soil texture, soil fertility, or available soil water.
Applied Engineering in Agriculture | 2006
Mitiku Mamo; William L. Kranz; E. R. Douskey; Shripat T. Kamble; John F. Witkowski
The application rates of 61 anhydrous ammonia applicators were measured to determine their application accuracy. Thirty percent of the operators underapplied anhydrous ammonia while 34% overapplied. The principle distinction between applicators was the use of “controllers” or “regulators.” The application rate errors of 17 controllers and 44 regulators were significantly different. Fifty-nine percent of the controllers and 27% of the regulators had acceptable application rate errors. Thus, it was concluded that controllers were more accurate than regulators.