Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William L. Straube is active.

Publication


Featured researches published by William L. Straube.


JAMA | 2010

Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer

Robert D. Timmerman; Rebecca Paulus; James M. Galvin; J.M. Michalski; William L. Straube; Jeffrey D. Bradley; Achilles J. Fakiris; Andrea Bezjak; Gregory M.M. Videtic; David Johnstone; Jack F. Fowler; Elizabeth Gore; Hak Choy

CONTEXT Patients with early stage but medically inoperable lung cancer have a poor rate of primary tumor control (30%-40%) and a high rate of mortality (3-year survival, 20%-35%) with current management. OBJECTIVE To evaluate the toxicity and efficacy of stereotactic body radiation therapy in a high-risk population of patients with early stage but medically inoperable lung cancer. DESIGN, SETTING, AND PATIENTS Phase 2 North American multicenter study of patients aged 18 years or older with biopsy-proven peripheral T1-T2N0M0 non-small cell tumors (measuring <5 cm in diameter) and medical conditions precluding surgical treatment. The prescription dose was 18 Gy per fraction x 3 fractions (54 Gy total) with entire treatment lasting between 1(1/2) and 2 weeks. The study opened May 26, 2004, and closed October 13, 2006; data were analyzed through August 31, 2009. MAIN OUTCOME MEASURES The primary end point was 2-year actuarial primary tumor control; secondary end points were disease-free survival (ie, primary tumor, involved lobe, regional, and disseminated recurrence), treatment-related toxicity, and overall survival. RESULTS A total of 59 patients accrued, of which 55 were evaluable (44 patients with T1 tumors and 11 patients with T2 tumors) with a median follow-up of 34.4 months (range, 4.8-49.9 months). Only 1 patient had a primary tumor failure; the estimated 3-year primary tumor control rate was 97.6% (95% confidence interval [CI], 84.3%-99.7%). Three patients had recurrence within the involved lobe; the 3-year primary tumor and involved lobe (local) control rate was 90.6% (95% CI, 76.0%-96.5%). Two patients experienced regional failure; the local-regional control rate was 87.2% (95% CI, 71.0%-94.7%). Eleven patients experienced disseminated recurrence; the 3-year rate of disseminated failure was 22.1% (95% CI, 12.3%-37.8%). The rates for disease-free survival and overall survival at 3 years were 48.3% (95% CI, 34.4%-60.8%) and 55.8% (95% CI, 41.6%-67.9%), respectively. The median overall survival was 48.1 months (95% CI, 29.6 months to not reached). Protocol-specified treatment-related grade 3 adverse events were reported in 7 patients (12.7%; 95% CI, 9.6%-15.8%); grade 4 adverse events were reported in 2 patients (3.6%; 95% CI, 2.7%-4.5%). No grade 5 adverse events were reported. CONCLUSION Patients with inoperable non-small cell lung cancer who received stereotactic body radiation therapy had a survival rate of 55.8% at 3 years, high rates of local tumor control, and moderate treatment-related morbidity.


Journal of Clinical Oncology | 2009

Intensity-Modulated Radiation Therapy With or Without Chemotherapy for Nasopharyngeal Carcinoma: Radiation Therapy Oncology Group Phase II Trial 0225

Nancy Y. Lee; Jonathan Harris; Adam S. Garden; William L. Straube; Bonnie S. Glisson; P. Xia; Walter R. Bosch; William H. Morrison; Jeanne M. Quivey; Wade L. Thorstad; Chris Jones; K. Kian Ang

PURPOSE To investigate the feasibility of intensity-modulated radiation therapy (IMRT) with or without chemotherapy, and to assess toxicities, failure patterns, and survivals in patients with nasopharyngeal carcinoma (NPC). PATIENTS AND METHODS Radiation consisted of 70 Gy given to the planning target volumes of primary tumor plus any N+ disease and 59.4 Gy given to subclinical disease, delivered over 33 treatment days. Patients with stage T2b or greater or with N+ disease also received concurrent cisplatin (100 mg/m(2)) on days 1, 22, and 43 followed by adjuvant cisplatin (80 mg/m(2)) on day 1; fluorouracil (1,000 mg/m(2)/d) on days 1 through 4 administered every 4 weeks for three cycles. Tumor, clinical status, and acute/late toxicities were assessed. The primary objective was to test the transportability of IMRT to a multi-institutional setting. RESULTS Between February 2003 and November 2005, 68 patients with stages I through IVB NPC (of which 93.8% were WHO types 2 and 3) were enrolled. Prescribed IMRT (target delineation) was given to 83.8%, whereas 64.9% received chemotherapy per protocol. The estimated 2-year local progression-free (PF), regional PF, locoregional PF, and distant metastasis-free rates were 92.6%, 90.8%, 89.3%, and 84.7%, respectively. The estimated 2-year PF and overall survivals were 72.7% and 80.2%, respectively. Acute grade 4 mucositis occurred in 4.4%, and the worst late grade 3 toxicities were as follows: esophagus, 4.7%; mucous membranes, 3.1%; and xerostomia, 3.1%. The rate of grade 2 xerostomia at 1 year from start of IMRT was 13.5%. Only two patients complained of grade 3 xerostomia, and none had grade 4 xerostomia. CONCLUSION It was feasible to transport IMRT with or without chemotherapy in the treatment of NPC to a multi-institutional setting with 90% LRPF rate reproducing excellent reports from single institutions. Minimal grade 3 and lack of grade 4 xerostomia were encouraging.


International Journal of Radiation Oncology Biology Physics | 2010

Multi-Institutional Trial of Accelerated Hypofractionated Intensity-Modulated Radiation Therapy for Early-Stage Oropharyngeal Cancer (RTOG 00-22)

Avraham Eisbruch; Jonathan Harris; Adam S. Garden; C. Chao; William L. Straube; Paul M. Harari; Giuseppe Sanguineti; Christopher U. Jones; Walter R. Bosch; K. Kian Ang

PURPOSE To assess the results of a multi-institutional study of intensity-modulated radiation therapy (IMRT) for early oropharyngeal cancer. PATIENTS AND METHODS Patients with oropharyngeal carcinoma Stage T1-2, N0-1, M0 requiring treatment of the bilateral neck were eligible. Chemotherapy was not permitted. Prescribed planning target volumes (PTVs) doses to primary tumor and involved nodes was 66 Gy at 2.2 Gy/fraction over 6 weeks. Subclinical PTVs received simultaneously 54-60 Gy at 1.8-2.0 Gy/fraction. Participating institutions were preapproved for IMRT, and quality assurance review was performed by the Image-Guided Therapy Center. RESULTS 69 patients were accrued from 14 institutions. At median follow-up for surviving patients (2.8 years), the 2-year estimated local-regional failure (LRF) rate was 9%. 2/4 patients (50%) with major underdose deviations had LRF compared with 3/49 (6%) without such deviations (p = 0.04). All cases of LRF, metastasis, or second primary cancer occurred among patients who were current/former smokers, and none among patients who never smoked. Maximal late toxicities Grade >or=2 were skin 12%, mucosa 24%, salivary 67%, esophagus 19%, osteoradionecrosis 6%. Longer follow-up revealed reduced late toxicity in all categories. Xerostomia Grade >or=2 was observed in 55% of patients at 6 months but reduced to 25% and 16% at 12 and 24 months, respectively. In contrast, salivary output did not recover over time. CONCLUSIONS Moderately accelerated hypofractionatd IMRT without chemotherapy for early oropharyngeal cancer is feasible, achieving high tumor control rates and reduced salivary toxicity compared with similar patients in previous Radiation Therapy Oncology Group studies. Major target underdose deviations were associated with higher LRF rate.


International Journal of Hyperthermia | 2005

Non-invasive estimation of hyperthermia temperatures with ultrasound.

R.M. Arthur; William L. Straube; Jason W. Trobaugh; Eduardo G. Moros

Ultrasound is an attractive modality for temperature monitoring because it is non-ionizing, convenient, inexpensive and has relatively simple signal processing requirements. This modality may be useful for temperature estimation if a temperature-dependent ultrasonic parameter can be identified, measured and calibrated. The most prominent methods for using ultrasound as a non-invasive thermometer exploit either (1) echo shifts due to changes in tissue thermal expansion and speed of sound (SOS), (2) variation in the attenuation coefficient or (3) change in backscattered energy from tissue inhomogeneities. The use of echo shifts has received the most attention in the last decade. By tracking scattering volumes and measuring the time shift of received echoes, investigators have been able to predict the temperature from a region of interest both theoretically and experimentally in phantoms, in isolated tissue regions in vitro and preliminary in vivo studies. A limitation of this method for general temperature monitoring is that prior knowledge of both SOS and thermal-expansion coefficients is necessary. Acoustic attenuation is dependent on temperature, but with significant changes occurring only at temperatures above 50°C, which may lead to its use in thermal ablation therapies. Minimal change in attenuation, however, below this temperature range reduces its attractiveness for use in clinical hyperthermia. Models and measurements of the change in backscattered energy suggest that, over the clinical hyperthermia temperature range, changes in backscattered energy are dependent on the properties of individual scatterers or scattering regions. Calibration of the backscattered energy from different tissue regions is an important goal of this approach. All methods must be able to cope with motion of the image features on which temperature estimates are based. A crucial step in identifying a viable ultrasonic approach to temperature estimation is its performance during in vivo tests.


Radiation Research | 1997

Measurement of DNA Damage after Exposure to Electromagnetic Radiation in the Cellular Phone Communication Frequency Band (835.62 and 847.74 MHz)

Robert S. Malyapa; Eric W. Ahern; William L. Straube; Eduardo G. Moros; William F. Pickard; Joseph L. Roti Roti

Mouse C3H 10T1/2 fibroblasts and human glioblastoma U87MG cells were exposed to cellular phone communication frequency radiations to investigate whether such exposure produces DNA damage in in vitro cultures. Two types of frequency modulations were studied: frequency-modulated continuous-wave (FMCW), with a carrier frequency of 835.62 MHz, and code-division multiple-access (CDMA) centered on 847.74 MHz. Exponentially growing (U87MG and C3H 10T1/2 cells) and plateau-phase (C3H 10T1/2 cells) cultures were exposed to either FMCW or CDMA radiation for varying periods up to 24 h in specially designed radial transmission lines (RTLs) that provided relatively uniform exposure with a specific absorption rate (SAR) of 0.6 W/kg. Temperatures in the RTLs were monitored continuously and maintained at 37 +/- 0.3 degrees C. Sham exposure of cultures in an RTL (negative control) and 137Cs gamma-irradiated samples (positive control) were included with every experiment. The alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-269, 1992) was used to measure DNA damage. No significant differences were observed between the test group exposed to FMCW or CDMA radiation and the sham-treated negative controls. Our results indicate that exposure of cultured mammalian cells to cellular phone communication frequencies under these conditions at an SAR of 0.6 W/kg does not cause DNA damage as measured by the alkaline comet assay.


Radiation Research | 1998

DNA Damage in Rat Brain Cells after In Vivo Exposure to 2450 MHz Electromagnetic Radiation and Various Methods of Euthanasia

Robert S. Malyapa; Eric W. Ahern; Chen Bi; William L. Straube; Marie LaRegina; William F. Pickard; Joseph L. Roti Roti

The present study was done to confirm the reported observation that low-intensity acute exposure to 2450 MHz radiation causes DNA single-strand breaks (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995). Male Sprague-Dawley rats weighing approximately 250 g were irradiated with 2450 MHz continuous-wave (CW) microwaves for 2 h at a specific absorption rate of 1.2 W/kg in a cylindrical waveguide system (Guy et al., Radio Sci. 14, 63-74, 1979). There was no associated rise in the core body temperature of the rats. After the irradiation or sham treatments, rats were euthanized by either CO2 asphyxia or decapitation by guillotine (eight pairs of animals per euthanasia group). After euthanasia the brains were removed and immediately immersed in cold Ames medium and the cells of the cerebral cortex and the hippocampus were dissociated separately and subjected to the alkaline comet assay. Irrespective of whether the rats were euthanized by CO2 asphyxia or decapitated by guillotine, no significant differences were observed between either the comet length or the normalized comet moment of cells from either the cerebral cortex or the hippocampus of sham-treated rats and those from the irradiated rats. However, the data for the rats asphyxiated with CO2 showed more intrinsic DNA damage and more experiment-to-experiment variation than did the data for rats euthanized by guillotine. Therefore, the guillotine method of euthanasia is the most appropriate in studies relating to DNA damage. Furthermore, we did not confirm the observation that DNA damage is produced in cells of the rat cerebral cortex or the hippocampus after a 2-h exposure to 2450 MHz CW microwaves or at 4 h after the exposure.


International Journal of Radiation Oncology Biology Physics | 2007

DOSIMETRIC EVALUATION OF HETEROGENEITY CORRECTIONS FOR RTOG 0236: STEREOTACTIC BODY RADIOTHERAPY OF INOPERABLE STAGE I-II NON-SMALL- CELL LUNG CANCER

Ying Xiao; Lech Papiez; Rebecca Paulus; Robert D. Timmerman; William L. Straube; Walter R. Bosch; Jeff M. Michalski; James M. Galvin

PURPOSE Using a retrospective analysis of treatment plans submitted from multiple institutions accruing patients to the Radiation Therapy Oncology Group (RTOG) 0236 non-small-cell stereotactic body radiotherapy protocol, the present study determined the dose prescription and critical structure constraints for future stereotactic body radiotherapy lung protocols that mandate density-corrected dose calculations. METHOD AND MATERIALS A subset of 20 patients from four institutions participating in the RTOG 0236 protocol and using superposition/convolution algorithms were compared. The RTOG 0236 protocol required a prescription dose of 60 Gy delivered in three fractions to cover 95% of the planning target volume. Additional requirements were specified for target dose heterogeneity and the dose to normal tissue/structures. The protocol required each site to plan the patients treatment using unit density, and another plan with the same monitor units and applying density corrections was also submitted. These plans were compared to determine the dose differences. Two-sided, paired Students t tests were used to evaluate these differences. RESULTS With heterogeneity corrections applied, the planning target volume receiving >/=60 Gy decreased, on average, 10.1% (standard error, 2.7%) from 95% (p = .001). The maximal dose to any point >/=2 cm away from the planning target volume increased from 35.2 Gy (standard error, 1.7) to 38.5 Gy (standard error, 2.2). CONCLUSION Statistically significant dose differences were found with the heterogeneity corrections. The information provided in the present study is being used to design future heterogeneity-corrected RTOG stereotactic body radiotherapy lung protocols to match the true dose delivered for RTOG 0236.


Radiation Research | 2004

Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation.

Graham J. Hook; Peng Zhang; I. Lagroye; Li Li; Eduardo G. Moros; William L. Straube; William F. Pickard; Jack D. Baty; Joseph L. Roti Roti

Abstract Hook, G. J., Zhang, P., Lagroye, I., Li, L., Higashikubo, R., Moros, E. G., Straube, W. L., Pickard, W. F., Baty, J. D. and Roti Roti, J. L. Measurement of DNA Damage and Apoptosis in Molt-4 Cells after In Vitro Exposure to Radiofrequency Radiation. Radiat. Res. 161, 193–200 (2004). To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN® (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37°C ± 0.3°C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.


Acta Oncologica | 2006

Accreditation and quality assurance for Radiation Therapy Oncology Group: Multicenter clinical trials using Stereotactic Body Radiation Therapy in lung cancer

Robert D. Timmerman; James M. Galvin; Jeff M. Michalski; William L. Straube; Geoffrey S. Ibbott; Elizabeth Martin; Ramzi Abdulrahman; S. Swann; Jack F. Fowler; Hak Choy

Starting in 2002, the Radiation Therapy Oncology Group in North America began the process of developing multicenter prospective trials in lung cancer using Stereotactic Body Radiation Therapy (SBRT). Much of the work was based on the prospective single institution trials from Indiana University that had been presented and published. In late 2004, RTOG 0236 using SBRT for medically inoperable patients with clinical stage I non-small cell lung cancer (NSCLC) was activated for accrual. Prior to activation, representatives from the Lung, Image-Guided Therapy, Physics, and Radiobiology Committees met on regular occasions to design the multicenter study and quality assurance measures. SBRT is not a black box, and the essence of the therapy had to be distilled via guidelines. Issues related to patient selection, method of dosimetry construction, equipment requirements, motion assessments and control, site accreditation, data exchange, and follow-up policies were worked out by compromise and consensus. RTOG 0236 has nearly completed its accrual. The Lung Committee has initiated the development of several other trials, each building on the last, to investigate the therapy in central tumors, in combinations with systemic therapy, in operable patients, and in lung metastases patients. The guidelines developed for RTOG 0236 will be refined to take advantage of more modern innovations including heterogeneity corrections and intensity modulation when appropriate. The development of RTOG 0618 using SBRT in operable patients with early stage NSCLC is a testament to both the enthusiasm from already published works and prospective multicenter clinical testing using SBRT techniques.


Ultrasound in Medicine and Biology | 1994

Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry

William L. Straube; R. Martin Arthur

The backscattered signal received from an insonified volume of tissue depends on tissue properties, such as attenuation, velocity, density, and backscatter coefficient and on the characteristics of the transducer at the insonified volume. Analysis of scattering in response to a burst of insonification showed that the temperature dependence of backscattered power was dominated by the effect of temperature on the backscatter coefficient. The temperature dependence of attenuation had a small effect on backscattered power. Backscattered power was independent of effects of temperature on velocity. These results were seen in the analysis of two types of inhomogeneity: 1) an aqueous scatterer in a water-based medium and 2) a lipid-based scatterer in the same water-based medium. The temperature dependence of the backscatter coefficient was inferred assuming that the backscatter coefficient was proportional to the scattering cross-section of a small scatterer. Backscattered power increased nearly logarithmically with temperature over the range from 37 degrees to 50 degrees C. Our model predicted a change of 5 dB for the lipid scatterer and a change of up to 3 db for the aqueous-based scatterer over that temperature range. For situations in which temperature dependence of the backscattered power can be calibrated, it may be possible to use the backscattered power level to track temperature distributions in tissue.

Collaboration


Dive into the William L. Straube's collaboration.

Top Co-Authors

Avatar

Eduardo G. Moros

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Robert J. Myerson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Walter R. Bosch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

B. Emami

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

William F. Pickard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

James M. Galvin

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Robert D. Timmerman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

J.M. Michalski

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

James A. Purdy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan Harris

Radiation Therapy Oncology Group

View shared research outputs
Researchain Logo
Decentralizing Knowledge