Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William M. Gallagher is active.

Publication


Featured researches published by William M. Gallagher.


Cancer Discovery | 2011

Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy

David G. DeNardo; Donal J. Brennan; Elton Rexhepaj; Brian Ruffell; Stephen L. Shiao; Stephen F. Madden; William M. Gallagher; Nikhil Wadhwani; Scott D. Keil; Sharfaa A. Junaid; Hope S. Rugo; E. Shelley Hwang; Karin Jirström; Brian L. West; Lisa M. Coussens

UNLABELLED Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. SIGNIFICANCE These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.


Photochemistry and Photobiology | 2009

Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy

Aisling E. O’Connor; William M. Gallagher; Annette T. Byrne

Photodynamic therapy (PDT) is now a well‐recognized modality for the treatment of cancer. While PDT has developed progressively over the last century, great advances have been observed in the field in recent years. The concept of dual selectivity of PDT agents is now widely accepted due to the relative specificity and selectivity of PDT along with the absence of harmful side effects often encountered with chemotherapy or radiotherapy. Traditionally, porphyrin‐based photosensitizers have dominated the PDT field but these first generation photosensitizers have several disadvantages, with poor light absorption and cutaneous photosensitivity being the predominant side effects. As a result, the requirement for new photosensitizers, including second generation porphyrins and porphyrin derivatives as well as third generation photosensitizers has arisen, with the aim of alleviating the problems encountered with first generation porphyrins and improving the efficacy of PDT. The investigation of nonporphyrin photosensitizers for the development of novel PDT agents has been considerably less extensive than porphyrin‐based compounds; however, structural modification of nonporphyrin photosensitizers has allowed for manipulation of the photochemotherapeutic properties. The aim of this review is to provide an insight into PDT photosensitizers clinically approved for application in oncology, as well as those which show significant potential in ongoing preclinical studies.


Cancer Research | 2013

Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses

Jonathan B. Mitchem; Donal J. Brennan; Brett L. Knolhoff; Brian Belt; Yu Zhu; Dominic E. Sanford; Larisa Belaygorod; Danielle Carpenter; Lynne Collins; David Piwnica-Worms; Stephen M. Hewitt; Girish Mallya Udupi; William M. Gallagher; Craig D. Wegner; Brian L. West; Andrea Wang-Gillam; Peter S. Goedegebuure; David C. Linehan; David G. DeNardo

Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.


The Journal of Pathology | 2008

Cancer invasion and metastasis: changing views†

Michael J. Duffy; Patricia M. McGowan; William M. Gallagher

The formation of distant metastasis is the main cause of morbidity and mortality in patients with cancer. The aim of this article is to review recent advances in molecular and clinical aspects of metastasis. Traditionally, genes encoding extracellular matrix (ECM) processing proteases, adhesion proteins, and motility factors were thought to be amongst the main mediators of metastasis. Recently, however, genes activated during the early stages of tumourigenesis were implicated in the process. Conversely, genes thought to be primarily involved in metastasis such as urokinase plasminogen (uPA) and certain matrix metalloproteases (MMPs) are now known to also play a role in the early steps of tumour progression, perhaps by stimulating cell proliferation and/or promoting angiogenesis. Paradoxically, certain endogenous protease inhibitors such as PAI‐1 and TIMP‐1 appear to promote cancer metastasis rather than inhibiting the process. These recent advances in our understanding should lead to the development of new molecular markers for predicting the likely formation of metastasis as well as the identification of new targets for anti‐metastatic therapies. Copyright


EMBO Reports | 2003

Fibulins: physiological and disease perspectives

W. Scott Argraves; Lisa M. Greene; Marion A. Cooley; William M. Gallagher

The fibulins are a family of proteins that are associated with basement membranes and elastic extracellular matrix fibres. This review summarizes findings from studies of animal models of fibulin deficiency, human fibulin gene mutations, human tumours and injury models that have advanced our understanding of the normal and pathological roles of members of this formerly obscure family.


Oncogene | 1997

hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents.

Robert Brown; Gillian L. Hirst; William M. Gallagher; Amanda J. McIlwrath; Geoffrey P. Margison; A G Van der Zee; D A Anthoney

Loss of expression of the hMLH1 and hPMS2 subunits of the MutLα-mismatch repair complex is a frequent event (9/10) in independent cisplatin resistant derivatives of a human ovarian carcinoma cell line. However, only hMLH1 mRNA is decreased in these MutLα-deficient lines. No alterations in the levels of the hMSH2 and hMSH6 (GTBP) subunits of the MutSα-complex are observed. An increase in the proportion of ovarian tumours negative for the hMLH1 subunit is observed in samples taken at second look laporotomy after chemotherapy (36%: 4/11), compared to untreated tumours (10%: 4/39). No significant difference is observed for hMSH2, hMSH6 or hPMS2. Furthermore, cisplatin and doxorubicin-resistant ovarian lines deficient in hMLH1 expression are cross-resistant to 6-thioguanine and the methylating agent N-methyl-N-nitrosourea (MNU). Depletion of O6-alkylguanine-DNA-alkyltransferase (ATase) activity confers only limited increased sensitivity to MNU. Thus the mismatch repair deficient lines retain DNA damage tolerance even after ATase depletion. The hMLH1 deficient lines also lose ability to engage G1 and G2 cell cycle arrest after cisplatin damage. Together these data suggest that loss of hMLH1 expression may be a high frequency event following exposure of ovarian tumour cells to cisplatin and may be critically involved in the development of drug resistance. Thus, the hMLH1 status of these cells appears to be highly correlated with the ability to engage cell death and cell cycle arrest after DNA damage induced by cisplatin.


Clinical Cancer Research | 2011

Interleukin-6 as a Therapeutic Target in Human Ovarian Cancer

Jermaine Coward; Hagen Kulbe; Probir Chakravarty; David Leader; Vessela Vassileva; D. Andrew Leinster; Richard G. Thompson; Tiziana Schioppa; Jeffery Nemeth; Jessica Vermeulen; Naveena Singh; Norbert Avril; Jeff Cummings; Elton Rexhepaj; Karin Jirström; William M. Gallagher; Donal J. Brennan; Iain A. McNeish; Frances R. Balkwill

Purpose: We investigated whether inhibition of interleukin 6 (IL-6) has therapeutic activity in ovarian cancer via abrogation of a tumor-promoting cytokine network. Experimental Design: We combined preclinical and in silico experiments with a phase 2 clinical trial of the anti-IL-6 antibody siltuximab in patients with platinum-resistant ovarian cancer. Results: Automated immunohistochemistry on tissue microarrays from 221 ovarian cancer cases showed that intensity of IL-6 staining in malignant cells significantly associated with poor prognosis. Treatment of ovarian cancer cells with siltuximab reduced constitutive cytokine and chemokine production and also inhibited IL-6 signaling, tumor growth, the tumor-associated macrophage infiltrate and angiogenesis in IL-6–producing intraperitoneal ovarian cancer xenografts. In the clinical trial, the primary endpoint was response rate as assessed by combined RECIST and CA125 criteria. One patient of eighteen evaluable had a partial response, while seven others had periods of disease stabilization. In patients treated for 6 months, there was a significant decline in plasma levels of IL-6–regulated CCL2, CXCL12, and VEGF. Gene expression levels of factors that were reduced by siltuximab treatment in the patients significantly correlated with high IL-6 pathway gene expression and macrophage markers in microarray analyses of ovarian cancer biopsies. Conclusion: IL-6 stimulates inflammatory cytokine production, tumor angiogenesis, and the tumor macrophage infiltrate in ovarian cancer and these actions can be inhibited by a neutralizing anti-IL-6 antibody in preclinical and clinical studies. Clin Cancer Res; 17(18); 6083–96. ©2011 AACR.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


Chemical Communications | 2002

Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour

John Killoran; Lorcan T. Allen; John F. Gallagher; William M. Gallagher; Donal F. O'Shea

The synthesis, spectroscopic characteristics and in vitro cellular uptake properties of a new class of therapeutic window photosensitiser, namely the BF2 chelates of 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylidene amines (tetra-arylazadipyrromethenes), are described with the aim of developing a novel class of photodynamic therapeutic agents.


Nature Reviews Cancer | 2010

Antibody-based proteomics: fast-tracking molecular diagnostics in oncology

Donal J. Brennan; Darran O'Connor; Elton Rexhepaj; Fredrik Pontén; William M. Gallagher

The effective implementation of personalized cancer therapeutic regimens depends on the successful identification and translation of informative biomarkers to aid clinical decision making. Antibody-based proteomics occupies a pivotal space in the cancer biomarker discovery and validation pipeline, facilitating the high-throughput evaluation of candidate markers. Although the clinical utility of these emerging technologies remains to be established, the traditional use of antibodies as affinity reagents in clinical diagnostic and predictive assays suggests that the rapid translation of such approaches is an achievable goal. Furthermore, in combination with, or as alternatives to, genomic and transcriptomic methods for patient stratification, antibody-based proteomics approaches offer the promise of additional insight into cancer disease states. In this Review, we discuss the current status of antibody-based proteomics and its contribution to the development of new assays that are crucial for the realization of individualized cancer therapy.

Collaboration


Dive into the William M. Gallagher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darran O'Connor

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Donal J. Brennan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John Crown

Dublin City University

View shared research outputs
Top Co-Authors

Avatar

Elton Rexhepaj

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Annette T. Byrne

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Elaine Kay

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rut Klinger

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge