William M. Phillips
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William M. Phillips.
Geological Society of America Bulletin | 2002
David R. Marchant; Adam R. Lewis; William M. Phillips; E. J. Moore; Roland Souchez; George H. Denton; David E. Sugden; Noel Potter; Gary P. Landis
A thin glacial diamicton, informally termed Granite drift, occupies the floor of central Beacon Valley in southern Victoria Land, Antarctica. This drift is 40 Ar/ 39 Ar analyses of presumed in situ ash-fall deposits that occur within Granite drift. At odds with the great age of this ice are high-centered polygons that cut Granite drift. If polygon development has reworked and retransported ash-fall deposits, then they are untenable as chronostratigraphic markers and cannot be used to place a minimum age on the underlying glacier ice. Our results show that the surface of Granite drift is stable at polygon centers and that enclosed ash-fall deposits can be used to define the age of underlying glacier ice. In our model for patterned-ground development, active regions lie only above polygon troughs, where enhanced sublimation of underlying ice outlines high-centered polygons. The rate of sublimation is influenced by the development of porous gravel-and-cobble lag deposits that form above thermal-contraction cracks in the underlying ice. A negative feedback associated with the development of secondary-ice lenses at the base of polygon troughs prevents runaway ice loss. Secondary-ice lenses contrast markedly with glacial ice by lying on a δD versus δ 18 O slope of 5 rather than a precipitation slope of 8 and by possessing a strongly negative deuterium excess. The latter indicates that secondary-ice lenses likely formed by melting, downward percolation, and subsequent refreezing of snow trapped preferentially in deep polygon troughs. The internal stratigraphy of Granite drift is related to the formation of surface polygons and surrounding troughs. The drift is composed of two facies: A nonweathered, matrix-supported diamicton that contains >25% striated clasts in the >16 mm fraction and a weathered, clast-supported diamicton with varnished and wind-faceted gravels and cobbles. The weathered facies is a coarse-grained lag of Granite drift that occurs at the base of polygon troughs and in lenses within the nonweathered facies. The concentration of cosmogenic 3 He in dolerite cobbles from two profiles through the nonweathered drift facies exhibits steadily decreasing values and shows the drift to have formed by sublimation of underlying ice. These profile patterns and the 3 He surface-exposure ages of 1.18 ± 0.08 Ma and 0.18 ± 0.01 Ma atop these profiles indicate that churning of clasts by cryoturbation has not occurred at these sites in at least the past 10 5 and 10 6 yr. Although Granite drift is stable at polygon centers, low-frequency slump events occur at the margin of active polygons. Slumping, together with weathering of surface clasts, creates the large range of cosmogenic-nuclide surface-exposure ages observed for Granite drift. Maximum rates of sublimation near active thermal-contraction cracks, calculated by using the two 3 He depth profiles, range from 5 m/m.y. to 90 m/m.y. Sublimation rates are likely highest immediately following major slump events and decrease thereafter to values well below our maximum estimates. Nevertheless, these rates are orders of magnitude lower than those computed on theoretical grounds. During eruptions of the nearby McMurdo Group volcanic centers, ash-fall debris collects at the surface of Granite drift, either in open thermal-contraction cracks or in deep troughs that lie above contraction cracks; these deposits subsequently lower passively as the underlying glacier ice sublimes. The fact that some regions of Granite drift have escaped modification by patterned ground for at least 8.1 Ma indicates long-term geomorphic stability of individual polygons. Once established, polygon toughs likely persist for as long as 10 5 –10 6 yr. Our model of patterned-ground formation, which applies to the hyperarid, cold-desert, polar climate of Antarctica, may also apply to similar-sized polygons on Mars that occur over buried ice in Utopia Planitia.
Geology | 2000
William M. Phillips; Valerie Sloan; John F. Shroder; Pankaj Sharma; Michèle L. Clarke; Helen M. Rendell
We present a new glacial chronology demonstrating asynchroneity between advances of Himalayan glaciers and Northern Hemisphere ice-sheet volumes. Glaciers at Nanga Parbat expanded during the early to middle Holocene ca. 9.0–5.5 ka. No major advances at Nanga Parbat during the last global glacial stage of marine oxygen isotope stage 2 (MIS-2) between 24 and 11 ka were identified. Preliminary evidence also indicates advances between ca. 60 and 30 ka. These periods of high ice volume coincide with warm, wet regional climates dominated by a strong southwest Asian summer monsoon. The general lack of deposits dating from MIS-2 suggests that Nanga Parbat was too arid to support expanded ice during this period of low monsoon intensity. Advances during warm, wet periods are possible for the high-altitude summer accumulation glaciers typical of the Himalayas, and explain asynchronous behavior. However, the Holocene advances at Nanga Parbat appear to have been forced by an abrupt drop in temperature ca. 8.4–8.0 ka and an increase in winter precipitation ca. 7–5.5 ka. These results highlight the overall sensitivity of Himalayan glaciation to orbital forcing of monsoon intensity, and on millennial or shorter time scales, to changes in North Atlantic circulation.
Geology | 2007
Steven A. Binnie; William M. Phillips; Michael A. Summerfield; L. Keith Fifield
Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hillslopes and remnants of pre-uplift topography. Concentrations of in situ–produced cosmogenic 10 Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ∼30°: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient–denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient–dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building.
Scottish Journal of Geology | 2007
Colin K. Ballantyne; Adrian M. Hall; William M. Phillips; Steven A. Binnie; Peter W. Kubik
Synopsis Geomorphological mapping provides evidence for two former low-level corrie glaciers on Hoy, both defined by end moraines. Five 10Be exposure ages obtained from sandstone boulders on moraine crests fall within the range 12.4 ± 1.5 ka to 10.4 ± 1.7 ka (weighted mean 11.7 ± 0.6 ka), confirming that these glaciers developed during the Loch Lomond (Younger Dryas) Stade (LLS) of 12.9–11.5 cal. ka bp, and demonstrate the feasibility of using this approach to establish the age of LLS glacier limits. The equilibrium line altitude (ELA) of one of the glaciers (99 m) is the lowest recorded for any LLS glacier, and the area-weighted mean ELA for both (141 m) is consistent with a general northward ELA decrease along the west coast of Britain. The size of moraines fronting these small (≤0.75 km2) glaciers implies that glacier termini remained at or close to their limits for a prolonged period. The apparent restriction of LLS glaciers to only two sites on Hoy probably reflects topographic favourability, and particularly the extent of snow-contributing areas.
Geografiska Annaler Series A-physical Geography | 2006
Adrian Malcom Hall; William M. Phillips
Abstract Weathering pits 1–140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non‐linear and a best fit is provided by the sigmoidal function D = b1 + exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52–297 ka. Glacially exposed surfaces with pits 10–46 cm deep have given 10Be exposure durations of 21–79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well‐developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum.
Journal of Human Evolution | 2011
Lawrence Barham; William M. Phillips; Barbara A. Maher; Vassil Karloukovski; G.A.T. Duller; Mayank Jain; A.G. Wintle
Flake based assemblages (Mode 1) comprise the earliest stone technologies known, with well-dated Oldowan sites occurring in eastern Africa between ~2.6-1.7 Ma, and in less securely dated contexts in central, southern and northern Africa. Our understanding of the spread and local development of this technology outside East Africa remains hampered by the lack of reliable numerical dating techniques applicable to non-volcanic deposits. This study applied the still relatively new technique of cosmogenic nuclide burial dating ((10)Be/(26)Al) to calculate burial ages for fluvial gravels containing Mode 1 artefacts in the Luangwa Valley, Zambia. The Manzi River, a tributary of the Luangwa River, has exposed a 4.7 m deep section of fluvial sands with discontinuous but stratified gravel layers bearing Mode 1, possibly Oldowan, artefacts in the basal layers. An unconformity divides the Manzi section, separating Mode 1 deposits from overlying gravels containing Mode 3 (Middle Stone Age) artefacts. No diagnostic Mode 2 (Acheulean) artefacts were found. Cosmogenic nuclide burial dating was attempted for the basal gravels as well as exposure ages for the upper Mode 3 gravels, but was unsuccessful. The complex depositional history of the site prevented the calculation of reliable age models. A relative chronology for the full Manzi sequence was constructed, however, from the magnetostratigraphy of the deposit (N>R>N sequence). Isothermal thermoluminescence (ITL) dating of the upper Mode 3 layers also provided consistent results (~78 ka). A coarse but chronologically coherent sequence now exists for the Manzi section with the unconformity separating probable mid- or early Pleistocene deposits below from late Pleistocene deposits above. The results suggest Mode 1 technology in the Luangwa Valley may post-date the Oldowan in eastern and southern Africa. The dating programme has contributed to a clearer understanding of the geomorphological processes that have shaped the valley and structured its archaeological record.
Journal of Geophysical Research | 2016
Taylor F. Schildgen; Ruth A. J. Robinson; Sara Savi; William M. Phillips; Joel Q. Spencer; Bodo Bookhagen; Dirk Scherler; Stefanie Tofelde; Ricardo N. Alonso; Peter W. Kubik; Steven A. Binnie; Manfred R. Strecker
Citation: Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., . . . Strecker, M. R. (2016). Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research-Earth Surface, 121(2), 392-414. doi:10.1002/2015jf003607
Scottish Geographical Journal | 2001
William M. Phillips
Abstract Cosmogenic nuclide surface exposure dating has generated important new insights into landscape evolution and surface process rates. The method permits numerical ages to be estimated for landforms that are difficult or impossible to otherwise date with a precision of about 5 % to 20 %. The accuracy and age range of cosmogenic nuclide surface exposure dating depends critically on local geomorphological conditions. Highly stable landscape features such as large glacial erratics yield the most reliable ages, although the technique can be applied with less precise results to stream terraces and other features lacking boulders or bedrock exposures. While landforms as young as several thousand years and as old as ten million years have been successfully dated, the age range in Scotland will generally reflect the duration of late Devensian glaciation between about 30 kyr to about 12 kyr. Cosmogenic nuclide applications require substantial mass spectrometry resources that are presently lacking or in development in the United Kingdom. Recent investments at the Scottish Universities Environmental Research Centre in noble gas and accelerator mass spectrometry presage the development of a world‐class facility in cosmogenic nuclide applications. Major scientific challenges for cosmogenic nuclide surface exposure dating include relating the rapid climatic changes observed in Greenland ice cores to the glacial history of Scotland.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2000
William M. Phillips
Abstract A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C.
Geomorphology | 2006
William M. Phillips; Adrian M. Hall; Ruth Mottram; L. Keith Fifield; David E. Sugden