Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William M. Saxton is active.

Publication


Featured researches published by William M. Saxton.


Journal of Cell Biology | 2004

A standardized kinesin nomenclature

Carolyn J. Lawrence; R. Kelly Dawe; Karen R. Christie; Don W. Cleveland; Scott C. Dawson; Sharyn A. Endow; Lawrence S.B. Goldstein; Holly V. Goodson; Nobutaka Hirokawa; Jonathon Howard; Russell L. Malmberg; J. Richard McIntosh; Harukata Miki; Timothy J. Mitchison; Yasushi Okada; William M. Saxton; Manfred Schliwa; Jonathan M. Scholey; Ronald D. Vale; Claire E. Walczak; Linda Wordeman

In recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered.


PLOS Genetics | 2012

Parkinson's Disease-Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria

Song Liu; Tomoyo Sawada; Seongsoo Lee; Wendou Yu; George Silverio; Philomena Alapatt; Ivan Millan; Alice Hangzhou Shen; William M. Saxton; Tomoko Kanao; Ryosuke Takahashi; Nobutaka Hattori; Yuzuru Imai; Bingwei Lu

Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinsons disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.


Cell | 1991

Kinesin Heavy Chain Is Essential for Viability and Neuromuscular Functions in Drosophila, but Mutants Show No Defects in Mitosis

William M. Saxton; Jennifer L. Hicks; Lawrence S.B. Goldstein; Elizabeth C. Raff

The in vivo function of the microtubule motor protein kinesin was examined in Drosophila using genetics and immunolocalization. Kinesin heavy chain mutations (khc) cause abnormal behavior and lethality. Mutant larvae exhibit loss of mobility and tactile responsiveness in the most posterior segments, followed by general paralysis and death during larval or pupal development. Adults homozygous for a temperature-sensitive allele also exhibit a loss in mobility and sensory responses. The data indicate that kinesin function is essential and suggest that kinesin has an important role in the neuromuscular system, perhaps as a motor for axonal transport. The possibility of more general cellular functions remains open, but observation of embryogenesis and morphogenesis in khc mutants suggests that mitosis and the cell cycle can proceed in spite of impaired kinesin function. Immunolocalization suggests that kinesin may have some general cellular functions but that it is not a major component of mitotic spindles.


Current Biology | 1998

A nematode kinesin required for cleavage furrow advancement.

James Powers; Olaf Bossinger; Debra J. Rose; Susan Strome; William M. Saxton

Dividing cells need to coordinate the separation of chromosomes with the formation of a cleavage plane. There is evidence that microtubule bundles in the interzone region of the anaphase spindle somehow control both the location and the assembly of the cleavage furrow [1-3]. A microtubule motor that concentrates in the interzone, MKLP1, has previously been implicated in the assembly of both the metaphase spindle and the cleavage furrow [4-6]. To gain insight into mechanisms that might underlie interdependence of the spindle and the cleavage furrow, we used RNA-mediated interference (RNAi) to study the effects of eliminating MKLP1 from Caenorhabditis elegans embryos. Surprisingly, in MKLP1(RNAi) embryos, spindle formation appears normal until late anaphase. Microtubule bundles form in the spindle interzone and the cleavage furrow assembles; anaphase and cleavage furrow ingression initially appear normal. The interzone bundles do not gather into a stable midbody, however, and furrow contraction always fails before complete closure. This sequence of relatively normal mitosis and a late failure of cytokinesis continues for many cell cycles. These and additional results suggest that the interzone microtubule bundles need MKLP1 to encourage the advance and stable closure of the cleavage furrow.


Current Biology | 2007

Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases

Dai Horiuchi; Catherine A. Collins; Pavan Bhat; Rosemarie V. Barkus; Aaron DiAntonio; William M. Saxton

Long-distance organelle transport toward axon terminals, critical for neuron development and function, is driven along microtubules by kinesins [1, 2]. The biophysics of force production by various kinesins is known in detail. However, the mechanisms of in vivo transport processes are poorly understood because little is known about how motor-cargo linkages are controlled. A c-Jun N-terminal kinase (JNK)-interacting protein (JIP1) has been identified previously as a linker between kinesin-1 and certain vesicle membrane proteins, such as Alzheimers APP protein and a reelin receptor ApoER2 [3, 4]. JIPs are also known to be scaffolding proteins for JNK pathway kinases [5, 6]. Here, we report evidence that a Drosophila ubiquitin-specific hydrolase and a JNK signaling pathway that it modulates can regulate a JIP1-kinesin linkage. The JNK pathway includes a MAPKKK (Wallenda/DLK), a MAPKK (Hemipterous/MKK7), and the Drosophila JNK homolog Basket. Genetic tests indicate that those kinases are required for normal axonal transport. Biochemical tests show that activation of Wallenda (DLK) and Hemipterous (MKK7) disrupts binding between kinesin-1 and APLIP1, which is the Drosophila JIP1 homolog. This suggests a control mechanism in which an activated JNK pathway influences axonal transport by functioning as a kinesin-cargo dissociation factor.


Current Biology | 2005

APLIP1, a Kinesin Binding JIP-1/JNK Scaffold Protein, Influences the Axonal Transport of Both Vesicles and Mitochondria in Drosophila

Dai Horiuchi; Rosemarie V. Barkus; Aaron D. Pilling; Andrew Gassman; William M. Saxton

In a genetic screen for Kinesin heavy chain (Khc)-interacting proteins, we identified APLIP1, a neuronally expressed Drosophila homolog of JIP-1, a JNK scaffolding protein . JIP-1 and its homologs have been proposed to act as physical linkers between kinesin-1, which is a plus-end-directed microtubule motor, and certain anterograde vesicles in the axons of cultured neurons . Mutation of Aplip1 caused larval paralysis, axonal swellings, and reduced levels of both anterograde and retrograde vesicle transport, similar to the effects of kinesin-1 inhibition. In contrast, Aplip1 mutation caused a decrease only in retrograde transport of mitochondria, suggesting inhibition of the minus-end microtubule motor cytoplasmic dynein . Consistent with dynein defects, combining heterozygous mutations in Aplip1 and Dynein heavy chain (Dhc64C) generated synthetic axonal transport phenotypes. Thus, APLIP1 may be an important part of motor-cargo linkage complexes for both kinesin-1 and dynein. However, it is also worth considering that APLIP1 and its associated JNK signaling proteins could serve as an important signaling module for regulating transport by the two opposing motors.


Development | 2005

Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes

Laura R. Serbus; Byeong-Jik Cha; William E. Theurkauf; William M. Saxton

Mass movements of cytoplasm, known as cytoplasmic streaming, occur in some large eukaryotic cells. In Drosophila oocytes there are two forms of microtubule-based streaming. Slow, poorly ordered streaming occurs during stages 8-10A, while pattern formation determinants such as oskar mRNA are being localized and anchored at specific sites on the cortex. Then fast well-ordered streaming begins during stage 10B, just before nurse cell cytoplasm is dumped into the oocyte. We report that the plus-end-directed microtubule motor kinesin-1 is required for all streaming and is constitutively capable of driving fast streaming. Khc mutations that reduce the velocity of kinesin-1 transport in vitro blocked streaming yet still supported posterior localization of oskar mRNA, suggesting that streaming is not essential for the oskar localization mechanism. Inhibitory antibodies indicated that the minus-end-directed motor dynein is required to prevent premature fast streaming, suggesting that slow streaming is the product of a novel dynein-kinesin competition. As F-actin and some associated proteins are also required to prevent premature fast streaming, our observations support a model in which the actin cytoskeleton triggers the shift from slow to fast streaming by inhibiting dynein. This allows a cooperative self-amplifying loop of plus-end-directed organelle motion and parallel microtubule orientation that drives vigorous streaming currents and thorough mixing of oocyte and nurse-cell cytoplasm.


Current Biology | 2007

Kinesin-5 acts as a brake in anaphase spindle elongation

Adam Saunders; James Powers; Susan Strome; William M. Saxton

Bipolar kinesin-5 motors, essential in diverse organisms, can generate positive sliding forces between overlapped interpolar microtubules to push mitotic spindle poles apart. BMK-1, the sole Caenorhabditis elegans kinesin-5, is not essential. We have determined, by tracking pole movements in bmk-1 mutant C. elegans embryos, that BMK-1 actually resists pole separation during anaphase. This provides in vivo evidence that kinesin-5, when challenged by fast pole separation forces, can serve as a rate-limiting brake for interpolar microtubule sliding.


Journal of Biological Chemistry | 1999

Lethal Kinesin Mutations Reveal Amino Acids Important for ATPase Activation and Structural Coupling

Katherine M. Brendza; Debra J. Rose; Susan P. Gilbert; William M. Saxton

To study the relationship between conventional kinesins structure and function, we identified 13 lethal mutations in the Drosophila kinesin heavy chain motor domain and tested a subset for effects on mechanochemistry. S246F is a moderate mutation that occurs in loop 11 between the ATP- and microtubule-binding sites. While ATP and microtubule binding appear normal, there is a 3-fold decrease in the rate of ATP turnover. This is consistent with the hypothesis that loop 11 provides a structural link that is important for the activation of ATP turnover by microtubule binding. T291M is a severe mutation that occurs in α-helix 5 near the center of the microtubule-binding surface. It impairs the microtubule-kinesin interaction and directly effects the ATP-binding pocket, allowing an increase in ATP turnover in the absence of microtubules. The T291M mutation may mimic the structure of a microtubule-bound, partially activated state. E164K is a moderate mutation that occurs at the β-sheet 5a/loop 8b junction, remote from the ATP pocket. Surprisingly, it causes both tighter ATP-binding and a 2-fold decrease in ATP turnover. We propose that E164 forms an ionic bridge with α-helix 5 and speculate that it helps coordinate the alternating site catalysis of dimerized kinesin heavy chain motor domains.


Journal of Cell Biology | 2004

Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes

James Powers; Debra J. Rose; Adam Saunders; Steven Dunkelbarger; Susan Strome; William M. Saxton

Holocentric chromosomes assemble kinetochores along their length instead of at a focused spot. The elongated expanse of an individual holocentric kinetochore and its potential flexibility heighten the risk of stable attachment to microtubules from both poles of the mitotic spindle (merotelic attachment), and hence aberrant segregation of chromosomes. Little is known about the mechanisms that holocentric species have evolved to avoid this type of error. Our studies of the influence of KLP-19, an essential microtubule motor, on the behavior of holocentric Caenorhabditis elegans chromosomes suggest that it has a major role in combating merotelic attachments. Depletion of KLP-19, which associates with nonkinetochore chromatin, allows aberrant poleward chromosome motion during prometaphase, misalignment of holocentric kinetochores, and multiple anaphase chromosome bridges in all mitotic divisions. Time-lapse movies of GFP-labeled mono- and bipolar spindles demonstrate that KLP-19 generates a force on relatively stiff holocentric chromosomes that pushes them away from poles. We hypothesize that this polar ejection force minimizes merotelic misattachment by maintaining a constant tension on pole–kinetochore connections throughout prometaphase, tension that compels sister kinetochores to face directly toward opposite poles.

Collaboration


Dive into the William M. Saxton's collaboration.

Top Co-Authors

Avatar

Debra J. Rose

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Susan Strome

University of California

View shared research outputs
Top Co-Authors

Avatar

Dai Horiuchi

University of California

View shared research outputs
Top Co-Authors

Avatar

James Powers

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosemarie V. Barkus

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth C. Raff

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

J. M. Deutsch

University of California

View shared research outputs
Top Co-Authors

Avatar

Katherine M. Brendza

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge