Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Mansfield is active.

Publication


Featured researches published by William Mansfield.


Development | 2009

Klf4 reverts developmentally programmed restriction of ground state pluripotency

Ge Guo; Jian Yang; Jennifer Nichols; John Hall; Isobel Eyres; William Mansfield; Austin Smith

Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process.


Cell | 2014

Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human

Yasuhiro Takashima; Ge Guo; Remco Loos; Jennifer Nichols; Gabriella Ficz; Felix Krueger; David Oxley; Fátima Santos; James Clarke; William Mansfield; Wolf Reik; Paul Bertone; Austin Smith

Summary Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.


Cell Stem Cell | 2009

Oct4 and LIF/Stat3 Additively Induce Krüppel Factors to Sustain Embryonic Stem Cell Self-Renewal

John Hall; Ge Guo; Jason Wray; Isobel Eyres; Jennifer Nichols; Lars Grotewold; Sofia Morfopoulou; Peter Humphreys; William Mansfield; Rachael Walker; Simon R. Tomlinson; Austin Smith

Embryonic stem cell (ESC) pluripotency is dependent on an intrinsic gene regulatory network centered on Oct4. Propagation of the pluripotent state is stimulated by the cytokine leukemia inhibitory factor (LIF) acting through the transcriptional regulator Stat3. Here, we show that this extrinsic stimulus converges with the intrinsic circuitry in Krüppel-factor activation. Oct4 primarily induces Klf2 while LIF/Stat3 selectively enhances Klf4 expression. Overexpression of either factor reduces LIF dependence, but with quantitative and qualitative differences. Unlike Klf4, Klf2 increases ESC clonogenicity, maintains undifferentiated ESCs in the genetic absence of Stat3, and confers resistance to BMP-induced differentiation. ESCs expanded with Klf2 remain capable of contributing to adult chimeras. Postimplantation-embryo-derived EpiSCs lack both Klf2 and Klf4 and expression of either can reinstate naive pluripotency. These findings indicate that Oct4 and Stat3 intersect in directing expression of Klf transcriptional regulators with overlapping properties that additively reinforce ground-state ESC pluripotency, identity, and self-renewal.


Nature Structural & Molecular Biology | 2013

Naive pluripotency is associated with global DNA hypomethylation

Harry G. Leitch; Kirsten McEwen; Aleksandra Turp; Vesela Encheva; Tom Carroll; Nils Grabole; William Mansfield; Buhe Nashun; Jaysen G Knezovich; Austin Smith; M. Azim Surani; Petra Hajkova

Naive pluripotent embryonic stem cells (ESCs) and embryonic germ cells (EGCs) are derived from the preimplantation epiblast and primordial germ cells (PGCs), respectively. We investigated whether differences exist between ESCs and EGCs, in view of their distinct developmental origins. PGCs are programmed to undergo global DNA demethylation; however, we find that EGCs and ESCs exhibit equivalent global DNA methylation levels. Inhibition of MEK and Gsk3b by 2i conditions leads to pronounced reduction in DNA methylation in both cell types. This is driven by Prdm14 and is associated with downregulation of Dnmt3a and Dnmt3b. However, genomic imprints are maintained in 2i, and we report derivation of EGCs with intact genomic imprints. Collectively, our findings establish that culture in 2i instills a naive pluripotent state with a distinctive epigenetic configuration that parallels molecular features observed in both the preimplantation epiblast and nascent PGCs.


Nature Medicine | 2009

Validated germline-competent embryonic stem cell lines from nonobese diabetic mice

Jennifer Nichols; Ken Jones; Jenny M. Phillips; Stephen A. Newland; Mila Roode; William Mansfield; Austin Smith; Anne Cooke

Nonobese diabetic (NOD) mice provide an excellent model of type 1 diabetes. The genetic contribution to this disease is complex, with more than 20 loci implicated in diabetes onset. One of the challenges for researchers using the NOD mouse model (and, indeed, other models of spontaneous autoimmune disease) has been the high density of sequence variation within candidate chromosomal segments. Furthermore, the scope for analyzing many putative disease loci via gene targeting has been hampered by the lack of NOD embryonic stem (ES) cells. We describe here the derivation of NOD ES cell lines capable of generating chimeric mice after stable genetic modification. These NOD ES cell lines also show efficient germline transmission, with offspring developing diabetes. The availability of these cells will not only enable the dissection of closely linked loci and the role they have in the onset of type 1 diabetes but also facilitate the generation of new transgenics.


Cell Stem Cell | 2012

NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment

Nicola Reynolds; Paulina Latos; Antony Hynes-Allen; Remco Loos; Donna Leaford; Aoife O'Shaughnessy; Olukunbi Mosaku; Jason Signolet; Philip Brennecke; Tuezer Kalkan; Ita Costello; Peter Humphreys; William Mansfield; Kentaro Nakagawa; John Strouboulis; Axel Behrens; Paul Bertone; Brian Hendrich

Summary Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.


Development | 2010

Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state

Harry G. Leitch; Kate Blair; William Mansfield; Harold Ayetey; Peter Humphreys; Jennifer Nichols; M. Azim Surani; Austin Smith

Mouse and rat embryonic stem cells can be sustained in defined medium by dual inhibition (2i) of the mitogen-activated protein kinase (Erk1/2) cascade and of glycogen synthase kinase 3. The inhibitors suppress differentiation and enable self-renewal of pluripotent cells that are ex vivo counterparts of naïve epiblast cells in the mature blastocyst. Pluripotent stem cell lines can also be derived from unipotent primordial germ cells via a poorly understood process of epigenetic reprogramming. These are termed embryonic germ (EG) cells to denote their distinct origin. Here we investigate whether EG cell self-renewal and derivation are supported by 2i. We report that mouse EG cells can be established with high efficiency using 2i in combination with the cytokine leukaemia inhibitory factor (LIF). Furthermore, addition of fibroblast growth factor or stem cell factor is unnecessary using 2i-LIF. The derived EG cells contribute extensively to healthy chimaeric mice, including to the germline. Using the same conditions, we describe the first derivations of EG cells from the rat. Rat EG cells express a similar marker profile to rat and mouse ES cells. They have a diploid karyotype, can be clonally expanded and genetically manipulated, and are competent for multilineage colonisation of chimaeras. These findings lend support to the postulate of a conserved molecular ground state in pluripotent rodent cells. Future research will determine the extent to which this is maintained in other mammals and whether, in some species, primordial germ cells might be a more tractable source than epiblast for the capture of naïve pluripotent stem cells.


Nature Cell Biology | 2011

LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease

Dean S. Griffiths; Juan Li; Mark A. Dawson; Matthew Trotter; Yi-Han Cheng; Aileen M. Smith; William Mansfield; Pentao Liu; Tony Kouzarides; Jennifer Nichols; Andrew J. Bannister; Anthony R. Green; Berthold Göttgens

Activating mutations in the tyrosine kinase Janus kinase 2 (JAK2) cause myeloproliferative neoplasms, clonal blood stem cell disorders with a propensity for leukaemic transformation. Leukaemia inhibitory factor (LIF) signalling through the JAK-signal transducer and activator of transcription (STAT) pathway enables self-renewal of embryonic stem (ES) cells. Here we show that mouse ES cells carrying the human JAK2V617F mutation were able to self-renew in chemically defined conditions without cytokines or small-molecule inhibitors, independently of JAK signalling through the STAT3 or phosphatidylinositol-3-OH kinase pathways. Phosphorylation of histone H3 tyrosine 41 (H3Y41) by JAK2 was recently shown to interfere with binding of heterochromatin protein 1α (HP1α). Levels of chromatin-bound HP1α were lower in JAK2V617F ES cells but increased following inhibition of JAK2, coincident with a global reduction in histone H3Y41 phosphorylation. JAK2 inhibition reduced levels of the pluripotency regulator Nanog, with a reduction in H3Y41 phosphorylation and concomitant increase in HP1α levels at the Nanog promoter. Furthermore, Nanog was required for factor independence of JAK2V617F ES cells. Taken together, these results uncover a previously unrecognized role for direct signalling to chromatin by JAK2 as an important mediator of ES cell self-renewal.


Development | 2014

Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst

Gloryn Chia Le Bin; Silvia Muñoz-Descalzo; Agata Kurowski; Harry G. Leitch; Xinghua Lou; William Mansfield; Charles Etienne-Dumeau; Nils Grabole; Carla Mulas; Hitoshi Niwa; Anna-Katerina Hadjantonakis; Jennifer Nichols

The transcription factor Oct4 is required in vitro for establishment and maintenance of embryonic stem cells and for reprogramming somatic cells to pluripotency. In vivo, it prevents the ectopic differentiation of early embryos into trophoblast. Here, we further explore the role of Oct4 in blastocyst formation and specification of epiblast versus primitive endoderm lineages using conditional genetic deletion. Experiments involving mouse embryos deficient for both maternal and zygotic Oct4 suggest that it is dispensable for zygote formation, early cleavage and activation of Nanog expression. Nanog protein is significantly elevated in the presumptive inner cell mass of Oct4 null embryos, suggesting an unexpected role for Oct4 in attenuating the level of Nanog, which might be significant for priming differentiation during epiblast maturation. Induced deletion of Oct4 during the morula to blastocyst transition disrupts the ability of inner cell mass cells to adopt lineage-specific identity and acquire the molecular profile characteristic of either epiblast or primitive endoderm. Sox17, a marker of primitive endoderm, is not detected following prolonged culture of such embryos, but can be rescued by provision of exogenous FGF4. Interestingly, functional primitive endoderm can be rescued in Oct4-deficient embryos in embryonic stem cell complementation assays, but only if the host embryos are at the pre-blastocyst stage. We conclude that cell fate decisions within the inner cell mass are dependent upon Oct4 and that Oct4 is not cell-autonomously required for the differentiation of primitive endoderm derivatives, as long as an appropriate developmental environment is established.


Stem Cells Translational Medicine | 2012

A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells

Imbisaat Geti; Mark L. Ormiston; Foad Rouhani; Mark Toshner; Mehregan Movassagh; Jennifer Nichols; William Mansfield; Mark Southwood; Allan Bradley; Amer Ahmed Rana; Ludovic Vallier; Nicholas W. Morrell

Induced pluripotent stem cells (iPSCs) have the potential to generate patient‐specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late‐outgrowth endothelial progenitor cells (L‐EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L‐EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof‐of‐principle for clinical applications we generated EPC‐iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L‐EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L‐EPC reprogramming allowed for the reliable generation of iPSCs in a 96‐well format, which is compatible with high‐throughput platforms. Array comparative genome hybridization analysis of L‐EPCs versus donor‐matched circulating monocytes demonstrated that L‐EPCs have normal karyotypes compared with their subjects reference genome. In addition, >80% of EPC‐iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L‐EPC line. This work identifies L‐EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.

Collaboration


Dive into the William Mansfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Smith

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Humphreys

Wellcome Trust Centre for Stem Cell Research

View shared research outputs
Top Co-Authors

Avatar

Ge Guo

Wellcome Trust Centre for Stem Cell Research

View shared research outputs
Top Co-Authors

Avatar

Anne Cooke

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isobel Eyres

Wellcome Trust Centre for Stem Cell Research

View shared research outputs
Top Co-Authors

Avatar

John Hall

Wellcome Trust Centre for Stem Cell Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge