William Marande
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Marande.
Eukaryotic Cell | 2005
William Marande; Julius Lukeš; Gertraud Burger
ABSTRACT Kinetoplastid flagellates are characterized by uniquely massed mitochondrial DNAs (mtDNAs), the kinetoplasts. Kinetoplastids of the trypanosomatid group possess two types of mtDNA molecules: maxicircles bearing protein and mitoribosomal genes and minicircles specifying guide RNAs, which mediate uridine insertion/deletion RNA editing. These circles are interlocked with one another to form dense networks. Whether these peculiar mtDNA features are restricted to kinetoplastids or prevail throughout Euglenozoa (euglenids, diplonemids, and kinetoplastids) is unknown. Here, we describe the mitochondrial genome and the mitochondrial ultrastructure of Diplonema papillatum, a member of the diplonemid flagellates, the sister group of kinetoplastids. Fluorescence and electron microscopy show a single mitochondrion per cell with an ultrastructure atypical for Euglenozoa. In addition, DNA is evenly distributed throughout the organelle rather than compacted. Molecular and electron microscopy studies distinguish numerous 6- and 7-kbp-sized mitochondrial chromosomes of monomeric circular topology and relaxed conformation in vivo. Remarkably, the cox1 gene (and probably other mitochondrial genes) is fragmented, with separate gene pieces encoded on different chromosomes. Generation of the contiguous cox1 mRNA requires trans-splicing, the precise mechanism of which remains to be determined. Taken together, the mitochondrial gene/genome structure of Diplonema is not only different from that of kinetoplastids but unique among eukaryotes as a whole.
Nucleic Acids Research | 2011
Čestmír Vlček; William Marande; Shona Teijeiro; Julius Lukeš; Gertraud Burger
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
Science | 2014
Eléonore Durand; Raphaël Méheust; Marion Soucaze; Pauline M. Goubet; Sophie Gallina; Céline Poux; Isabelle Fobis-Loisy; Eline Guillon; Thierry Gaude; Alexis Sarazin; Martin Figeac; Elisa Prat; William Marande; Hélène Bergès; Xavier Vekemans; Sylvain Billiard; Vincent Castric
The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)–producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles. Hierarchical interactions among alleles in a mustard plant explain how self-incompatibility evolved and is maintained. Dominance cascades in self-incompatibility Plants often cannot use their own pollen to set seed. This is known as self-incompatibility. Although some of the underlying genetics and mechanisms of self-incompatibility are understood, the evolution and maintenance of the system have remained mysterious. Durand et al. identified a collection of small RNAs and their respective matching targets within a self-incompatibility locus in Arabidopsis halleri. A subset of these alleles functioned in a dominant manner, which helps to explain how self-incompatibility is maintained. Science, this issue p. 1200
Journal of Experimental Botany | 2014
Emna Makhloufi; Fatma-Ezzahra Yousfi; William Marande; Isabelle Mila; Mohsen Hanana; Hélène Bergès; Rim Mzid; Mondher Bouzayen
As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties.
Nature Genetics | 2018
Cyrille Saintenac; Wing-Sham Lee; Florence Cambon; Jason J. Rudd; Robert King; William Marande; Stephen J. Powers; Hélène Bergès; Andrew Phillips; Cristobal Uauy; Kim E. Hammond-Kosack; Thierry Langin; Kostya Kanyuka
Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development5. Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6–8 and confers pathogen resistance without a hypersensitive response9. This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10–12.The authors report map-based cloning of the wheat Stb6 gene, which encodes a conserved wall-associated receptor kinase (WAK)-like protein. Stb6 confers gene-for-gene disease resistance to fungal pathogen Zymoseptoria tritici by recognition of a matching pathogen effector.
BioTechniques | 2016
Baptiste Mayjonade; Jérôme Gouzy; Cécile Donnadieu; Nicolas Pouilly; William Marande; Caroline Callot; Nicolas B. Langlade; Stéphane Muños
De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.
Molecular Biology and Evolution | 2017
Polina Novikova; Takashi Tsuchimatsu; Samson Simon; Viktoria Nizhynska; Viktor Voronin; Robin Burns; Olga M. Fedorenko; Svante Holm; Torbjörn Säll; Elisa Prat; William Marande; Vincent Castric; Magnus Nordborg
Abstract Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual—a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.
Frontiers in Plant Science | 2017
Fatma-Ezzahra Yousfi; Emna Makhloufi; William Marande; Abdelwahed Ghorbel; Mondher Bouzayen; Hélène Bergès
WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat (Triticum turgidum L. ssp. durum). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum. The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis-regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots increased in tolerant genotype compared to sensitive genotype. The present results indicate that these genes might play some functional role in the salt tolerance in durum wheat.
Molecular Biology and Evolution | 2017
Takashi Tsuchimatsu; Pauline M. Goubet; Sophie Gallina; Anne‐Catherine Holl; Isabelle Fobis-Loisy; Hélène Bergès; William Marande; Elisa Prat; Dazhe Meng; Quan Long; Alexander Platzer; Magnus Nordborg; Xavier Vekemans; Vincent Castric
Abstract Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. “Relict” A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.
bioRxiv | 2018
Jörg A Bachmann; Andrew Tedder; Benjamin Laenen; Marco Fracassetti; Aurélie Désamoré; Clément Lafon-Placette; Kim A. Steige; Caroline Callot; William Marande; Barbara Neuffer; Hélène Bergès; Claudia Köhler; Vincent Castric; Tanja Slotte
Shifts from outcrossing to self-fertilisation have occurred repeatedly in many different lineages of flowering plants, and often involve the breakdown of genetic outcrossing mechanisms. In the Brassicaceae, self-incompatibility (SI) allows plants to ensure outcrossing by recognition and rejection of self-pollen on the stigma. This occurs through the interaction of female and male specificity components, consisting of a pistil based receptor and a pollen-coat protein, both of which are encoded by tightly linked genes at the S-locus. When benefits of selfing are higher than costs of inbreeding, theory predicts that loss-of-function mutations in the male (pollen) SI component should be favoured, especially if they are dominant. However, it remains unclear whether mutations in the male component of SI are predominantly responsible for shifts to self-compatibility, and testing this prediction has been difficult due to the challenges of sequencing the highly polymorphic and repetitive ~100 kbp S-locus. The crucifer genus Capsella offers an excellent opportunity to study multiple transitions from outcrossing to self-fertilization, but so far, little is known about the genetic basis and timing of loss of SI in the self-fertilizing diploid Capsella orientalis. Here, we show that loss of SI in C. orientalis occurred within the past 2.6 Mya and maps as a dominant trait to the S-locus. Using targeted long-read sequencing of multiple complete S-haplotypes, we identify a frameshift deletion in the male specificity gene SCR that is fixed in C. orientalis, and we confirm loss of male SI specificity. We further analyze RNA sequencing data to identify a conserved, S-linked small RNA (sRNA) that is predicted to cause dominance of self-compatibility. Our results suggest that degeneration of pollen SI specificity in dominant S-alleles is important for shifts to self-fertilization in the Brassicaceae. Author Summary Already Darwin was fascinated by the widely varying modes of plant reproduction. The shift from outcrossing to self-fertilization is considered one of the most frequent evolutionary transitions in flowering plants, yet we still know little about the genetic basis of these shifts. In the Brassicaceae, outcrossing is enforced by a self-incompatibility (SI) system that enables the recognition and rejection of self pollen. This occurs through the action of two tightly linked genes at the S-locus, that encode a receptor protein located on the stigma (female component) and a pollen ligand protein (male component), respectively. Nevertheless, SI has frequently been lost, and theory predicts that mutations in the male component should have an advantage during the loss of SI, especially if they are dominant. To test this hypothesis, we mapped the loss of SI in a selfing species from the genus Capsella, a model system for evolutionary genomics. We found that loss of SI mapped to the S-locus, which harbored a dominant loss-of-function mutation in the male SI protein, and as expected, we found that male specificity was indeed lost in C. orientalis. Our results suggest that transitions to selfing often involve parallel genetic changes.