William N. Addison
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William N. Addison.
Journal of Biological Chemistry | 2007
William N. Addison; Fereshteh Azari; Esben S. Sørensen; Mari T. Kaartinen; Marc D. McKee
Inorganic pyrophosphate (PPi) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent “soft” tissues from mineralizing, whereas its degradation to Pi in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PPi are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PPi on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PPi. This inhibition could be reversed by Tnap, but not if PPi was bound to mineral. PPi also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PPi was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PPi, hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PPi inhibits Tnap-mediated Pi release from β-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PPi prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.
Journal of Bone and Mineral Research | 2008
William N. Addison; Yukiko Nakano; Thomas P. Loisel; Phillippe Crine; Marc D. McKee
Hyp mice having an inactivating mutation of the phosphate‐regulating gene with homologies to endopeptidases on the X‐chromosome (Phex) gene have bones with increased matrix extracellular phosphoglycoprotein (MEPE). An acidic, serine‐ and aspartic acid–rich motif (ASARM) is located in the C terminus of MEPE and other mineralized tissue matrix proteins. We studied the effects of ASARM peptides on mineralization and how PHEX and MEPE interactions contribute to X‐linked hypophosphatemia (XLH). ASARM immunoreactivity was observed in the osteoid of wildtype bone and in the increased osteoid of Hyp mice. In wildtype bone, PHEX immunostaining was found particularly in osteoid osteocytes and their surrounding matrix. Treatment of MC3T3‐E1 osteoblasts with triphosphorylated (3 phosphoserines) ASARM peptide (pASARM) caused a dose‐dependent inhibition of mineralization. pASARM did not affect collagen deposition or osteoblast differentiation, suggesting that pASARM inhibits mineralization by direct binding to hydroxyapatite crystals. Binding of pASARM to mineralization foci in pASARM‐treated cultures and to synthetic hydroxyapatite crystals was confirmed by colloidal‐gold immunolabeling. Nonphosphorylated ASARM peptide showed little or no binding to hydroxyapatite and did not inhibit mineralization, showing the importance of ASARM phosphorylation in regulating mineralization. PHEX rescued the inhibition of osteoblast culture mineralization by pASARM, and mass spectrometry of cleaved peptides obtained after pASARM‐PHEX incubations identified pASARM as a substrate for PHEX. These results, showing that pASARM inhibits mineralization by binding to hydroxyapatite and that this inhibitor can be cleaved by PHEX, provide a mechanism explaining how loss of PHEX activity can lead to extracellular matrix accumulation of ASARM resulting in the osteomalacia of XLH.
Journal of Bone and Mineral Research | 2009
William N. Addison; David L. Masica; Jeffrey J. Gray; Marc D. McKee
The SIBLING family (small integrin‐binding ligand N‐linked glycoproteins) of mineral‐regulating proteins, which includes matrix extracellular phosphoglycoprotein (MEPE) and osteopontin (OPN), contains an acidic serine‐ and aspartate‐rich motif (ASARM). X‐linked hypophosphatemia caused by inactivating mutations of the PHEX gene results in elevated mineralization‐inhibiting MEPE‐derived ASARM peptides. Although the OPN ASARM motif shares 60% homology with MEPE ASARM, it is still unknown whether OPN ASARM similarly inhibits mineralization. In this study we have examined the role of OPN ASARM and its interaction with PHEX enzyme using an osteoblast cell culture model, mass spectrometry, mineral‐binding assays, and computational modeling. MC3T3‐E1 osteoblast cultures were treated with differently phosphorylated OPN ASARM peptides [with 5 phosphoserines (OpnAs5) or 3 phosphoserines (OpnAs3)] or with control nonphosphorylated peptide (OpnAs0). Phosphorylated peptides dose‐dependently inhibited mineralization, and binding of phosphorylated peptides to mineral was confirmed by a hydroxyapatite‐binding assay. OpnAs0 showed no binding to hydroxyapatite and did not inhibit culture mineralization. Computational modeling of peptide‐mineral interactions indicated a favorable change in binding energy with increasing phosphorylation consistent with hydroxyapatite‐binding experiments and inhibition of culture mineralization. Addition of PHEX rescued inhibition of mineralization by OpnAs3. Mass spectrometry of cleaved peptides after ASARM‐PHEX incubations identified OpnAs3 as a PHEX substrate. We conclude that OPN ASARM inhibits mineralization by binding to hydroxyapatite in a phosphorylation‐dependent manner and that this inhibitor can be cleaved by PHEX, thus providing a mechanistic explanation for how loss of PHEX activity in X‐linked hyposphosphatemia can lead to extracellular matrix accumulation of ASARM resulting in the osteomalacia.
Journal of Bone and Mineral Research | 2013
Nilana M.T. Barros; Betty Hoac; Raquel L. Neves; William N. Addison; Diego M. Assis; Monzur Murshed; Adriana K. Carmona; Marc D. McKee
X‐linked hypophosphatemia (XLH/HYP)—with renal phosphate wasting, hypophosphatemia, osteomalacia, and tooth abscesses—is caused by mutations in the zinc‐metallopeptidase PHEX gene (phosphate‐regulating gene with homologies to endopeptidase on the X chromosome). PHEX is highly expressed by mineralized tissue cells. Inactivating mutations in PHEX lead to distal renal effects (implying accumulation of a secreted, circulating phosphaturic factor) and accumulation in bone and teeth of mineralization‐inhibiting, acidic serine‐ and aspartate‐rich motif (ASARM)‐containing peptides, which are proteolytically derived from the mineral‐binding matrix proteins of the SIBLING family (small, integrin‐binding ligand N‐linked glycoproteins). Although the latter observation suggests a local, direct matrix effect for PHEX, its physiologically relevant substrate protein(s) have not been identified. Here, we investigated two SIBLING proteins containing the ASARM motif—osteopontin (OPN) and bone sialoprotein (BSP)—as potential substrates for PHEX. Using cleavage assays, gel electrophoresis, and mass spectrometry, we report that OPN is a full‐length protein substrate for PHEX. Degradation of OPN was essentially complete, including hydrolysis of the ASARM motif, resulting in only very small residual fragments. Western blotting of Hyp (the murine homolog of human XLH) mouse bone extracts having no PHEX activity clearly showed accumulation of an ∼35 kDa OPN fragment that was not present in wild‐type mouse bone. Immunohistochemistry and immunogold labeling (electron microscopy) for OPN in Hyp bone likewise showed an accumulation of OPN and/or its fragments compared with normal wild‐type bone. Incubation of Hyp mouse bone extracts with PHEX resulted in the complete degradation of these fragments. In conclusion, these results identify full‐length OPN and its fragments as novel, physiologically relevant substrates for PHEX, suggesting that accumulation of mineralization‐inhibiting OPN fragments may contribute to the mineralization defect seen in the osteomalacic bone characteristic of XLH/HYP.
Cells Tissues Organs | 2005
Marc D. McKee; William N. Addison; Mari T. Kaartinen
Structural hierarchies are common in biologic systems and are particularly evident in biomineralized structures. In the craniofacial complex and skeleton of vertebrates, extracellular matrix and mineral of bone are structurally ordered at many dimensional scales from the macro level to the nano level. Indeed, the nanocomposite texture of bone, with nanocrystals of apatitic mineral embedded within a crosslinked matrix of fibrillar and nonfibrillar proteins, imparts to bone the very mechanical properties and toughness it needs to function in vital organ protection, musculoskeletal movement and mastication. This article focuses on how hierarchies of extracellular matrix protein organization influence bone cell behavior, tissue architecture and mineralization. Additional attention is given to recent work on the molecular determinants of mineral induction in bone, and how the mineralization process is subsequently regulated by inhibitory proteins.
Journal of Bone and Mineral Research | 2010
William N. Addison; Marc D. McKee
To the Editor: This letter is written in response to the Commentary ‘‘ASARM Mineralization Hypothesis: A Bridge too Far?’’ by V David and LD Quarles (see http://dx.doi.org/10.002/jbmr.69) on our article in the April 2010 issue entitled ‘‘Phosphorylation-Dependent Inhibition of Mineralization by Osteopontin ASARM Peptides Is Regulated by PHEX Cleavage’’ (see http://dx.doi.org/10.1359/ jbmr.090832). We thank the editor and these authors for taking the time to select our work for commentary and for critically reviewing and commenting upon our work as it relates to mechanisms regulating bone mineralization. The molecular mechanisms underlying biomineralization in different organisms are as diverse as they are complex. Vertebrate bone mineralization is no exception, and many factors—some circulating systemically, and some acting locally within the extracellular matrix—contribute to the formation of mineralized tissues. It is precisely the composite organic– inorganic nature of bones and teeth that defines the characteristic mechanical properties of the mineralized tissues so important to their function in the skeleton and dentition. The organic–inorganic interface is considered by most to be the playing field where biology intersects with geology to produce biominerals whose nanoscale dimensions impart unique properties to the tissues in which they reside. While the work reported here in our article on osteopontin peptide–mineral interactions is done entirely in vitro—as so readily pointed out by the Commentary authors David and Quarles—all ‘‘bridges’’ (see title of Commentary and title of this Letter) are rooted on one side typically by vast experimental work that ultimately leads to in vivo studies. We look forward to interpreting the data of both our new in vitro and in vivo experiments currently in progress on the osteopontin ASARM peptide, and to appreciating and integrating the work of others, whether as in vivo or in vitro studies, contributing to this field. To summarize the in vitro work reported here—that follows from our previous work and the work of others on the MEPE ASARM peptide—our studies reported in the April issue of JBMR provide key novel findings related to peptide control of crystal growth relevant to bone biology. Specifically, we demonstrate (i) that phosphorylated OPN ASARM inhibits extracellular matrix mineralization in an osteoblast culture model, (ii) that OPN
Molecular and Cellular Biology | 2014
William N. Addison; Martin Ming-Jen Fu; Helen X. Yang; Zhao Lin; Kenichi Nagano; Francesca Gori; Roland Baron
ABSTRACT Osteoblasts and adipocytes arise from a common mesenchymal precursor cell. The cell fate decision of a mesenchymal precursor cell is under the influence of molecular cues and signaling pathways that lead to the activation or repression of lineage-specific transcription factors. The molecular mechanisms determining osteoblast versus adipocyte lineage specificity in response to bone morphogenic protein (BMP) remain unclear. In this study, we describe the mechanism through which Zfp521 (ZNF521), a regulator of lineage progression in multiple immature cell populations, regulates lineage specification of mesenchymal progenitor cells during BMP-induced differentiation events. In vivo deletion or in vitro knockdown of Zfp521 in mesenchymal precursors resulted in increased expression of the adipocyte determinant factor Zfp423 (ZNF423). This was concurrent with the loss of histone H3K9 methylation and an increase in histone H3K9 acetylation at the Zfp423 promoter, which together are indicative of decreased gene repression. Indeed, we found that Zfp521 occupies and represses the promoter and intronic enhancer regions of Zfp423. Accordingly, conditional deletion of Zfp521 inhibited heterotopic bone formation in response to local injection of BMP2. In contrast, marrow adiposity within BMP2-induced bone was markedly enhanced in Zfp521-deficient mice, suggesting that precursor cells lacking Zfp521 differentiate preferentially into adipocytes instead of osteoblasts in response to BMP2. Consistent with a cell-autonomous role of Zfp521 in mesenchymal precursors, knockdown of Zfp521 in stromal cells prevented BMP2-induced osteoblast marker expression and simultaneously enhanced lipid accumulation and expression of adipocyte-related genes. Taken together, the data suggest that Zfp521 is a cell fate switch critical for BMP-induced osteoblast commitment and identify Zfp521 as the intrinsic repressor of Zfp423 and hence of adipocyte commitment during BMP-induced mesenchymal precursor differentiation.
Bone | 2015
William N. Addison; Valentin Nelea; Florencia Chicatun; Yung-Ching Chien; Nicolas Tran-Khanh; Michael D. Buschmann; Showan N. Nazhat; Mari T. Kaartinen; Hojatollah Vali; Mary M. J. Tecklenburg; Renny T. Franceschi; Marc D. McKee
Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone.
Biomaterials | 2010
William N. Addison; Sharon J. Miller; Janani Ramaswamy; Ahmad Mansouri; David H. Kohn; Marc D. McKee
Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification.
Periodontology 2000 | 2013
Marc D. McKee; Betty Hoac; William N. Addison; Nilana M.T. Barros; José Luis Millán; Catherine Chaussain
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpeys fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.