William P. Anderson
Appalachian State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William P. Anderson.
Water Resources Research | 2012
Chuanhui Gu; William P. Anderson; Federico Maggi
Hyporheic exchanges in riparian zones induced by stream stage fluctuations, referred to as bank storage, can influence contaminant transport and transformation when mixing of groundwater and surface waters with distinct chemical signatures occur, which might lead to a high biochemical activity. The effect of bank storage on nutrient transport was analyzed here using a two-dimensional, variably saturated and multi-species reactive transport model, which accounted for the water flow and solute transport and reactions within riparian zones. After verification with field observations, our model demonstrated that high biogeochemical activities occurred at the near-stream riparian zone during stage fluctuation, a process referred to as bank storage hot moment (BSHM). We used Monte Carlo simulations to study the uncertainty of BSHM and related nutrient dynamics to biogeochemical and hydrological factors. The results indicated that stream fluctuations can lead to maximum bank storage volume ranging from 0 to 259 m3 m1 of stream linear length (median ¼ 9.7 m3 and SD ¼ 53.2 m3). Taking denitrification as an example, BSHM can lead to considerable NO3 removal with a median removal rate of 2.1 g d1 and SD of 17.2 g d1 per meter of stream linear length. The NO3 uptake velocity (median ¼ 2.7 105 and SD ¼ 2.4 104 mmin1) was comparable to that of in-stream transient storage from the literature. This result suggests that BSHM may be a significant process contributing to the nutrient budget at the ecosystem level. Finally, a theoretical framework representing the coupled hydrobiogeochemical controls on riparian hot spots was developed to help predicting when BSHM can become important in a particular stream.
Geophysical Research Letters | 2008
William P. Anderson; Ryan E. Emanuel
Multi-year climate oscillations such as the El Nino–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) affect precipitation and stream discharge rates in the western hemisphere. While inferences may be drawn between these hydroclimatological relationships and groundwater conditions, few studies explicitly link groundwater conditions to these cycles. Here we investigate relationships between winter ENSO, PDO, and lagging baseflow rates in the southeastern United States. We find strong correlation between winter ENSO and lagged baseflow in coastal North Carolina which, coupled with anomalies in mean baseflow, decrease with distance inland from the coast. Our results demonstrate that interannual and interdecadal climate oscillations in the Pacific Ocean have a strong effect on hydrological processes in eastern North America despite filtering by the groundwater flow process. These results have implications for water resource availability in regions where water management is complicated by population growth and climatic uncertainty.
Journal of The American Water Resources Association | 2017
Kristan Cockerill; William P. Anderson; F. Claire Harris; Kelli Straka
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water-groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long-term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.
Water Resources Research | 2010
William P. Anderson; Ryan E. Emanuel
Journal of The American Water Resources Association | 2014
Kristan Cockerill; William P. Anderson
Hydrological Research Letters | 2011
Joshua S. Rice; William P. Anderson; Christopher S. Thaxton
Ground Water | 2007
William P. Anderson; David G. Evans
Hydrological Processes | 2015
Chuanhui Gu; William P. Anderson; Christopher L. Coffey
Water Resources Research | 2012
Chuanhui Gu; William P. Anderson; Federico Maggi
Journal of The American Water Resources Association | 2015
Kristan Cockerill; William P. Anderson